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Abstract:    

The present study is a mathematical model of the blood flow through a multistenosed artery. The aim of this paper is to analyze the effect 

of multiple stenosis on the blood flow parameters such as flow rate, flow resistance and shear stress. The rheology of the flowing blood is 

characterized by the Herchel-Bulkley fluid model with axial variation of viscosity to get the mathematical expression for flow parameters. 

Blood is taken as non-Newtonian fluid and the flow of blood is considered as steady, laminar, incompressible and one dimensional. The 

paper is solved analytically using the boundary conditions and the no slip condition on the wall. All the results are plotted by MATLAB 

software and describes the behaviour of flow parameters. Graph shows that flow rate decreases with increasing the size of stenosis 

whereas flow resistance and wall shear stress increases with increment in the stenosis size. 
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I.INTRODUCTION

 

As we know that at present time most of the population is 

suffering from cardiovascular disease. Cardiovascular 

disease continues to be the leading cause of death. The 

development of many arterial disease leading to the serious 

circulatory problem. The most common arterial disease is 

stenosis. Stenosis forms due to the deposition of plaque or 

cholesterol at the various location in the artery. The 

formation of stenosis disturbs the normal blood flow. The 

study of blood flow through a stenosed artery is important 

because the nature of blood movement and mechanical 

behaviour of vessel walls are cause of many cardiovascular 

diseases. Various studies have been done earlier for 

stenosed artery. Varsney et al. [3] investigated the effect of 

magnetic field on the blood flow in artery having multiple 

stenosis using the finite difference method. Srikanth and 

Taddesse [2] analyzed the blood flow through multiple 

stenotic artery in the presence of catheter assuming blood as 

incompressible and non-Newtonian. Tiwari and Chauhan 

[1] presented a mathematical model which deals with 

viscosity variation through constricted blood vessels, two 

fluid model is taken into account. Ikbal [6] investigated the 

viscoelastic blood flow through artery having cosine shaped 

stenosis in the presence of magnetic field. Mukhopadhyay 

et al. [8] conducted an investigation to see the impact of 

viscosity variation on blood flow through an overlapping 

doubly constricted tapered artery. Gupta et al. [5] studied 

the impact of radial variation of viscosity and presence of 

radially non-symmetric stenosis on blood flow in an artery. 

Gujral and Singh [4] investigated the effect on flow 

parameters of blood in overlapping atherosclerotic artery 

considering axial variation of viscosity blood as laminar, 

steady and axially symmetric using Herschel-Bulkley fluid 

model.          

Here an effort is attempt to explore to study the effect of 

axial variation of viscosity through a multistenosed artery to 

evaluate the flow parameters such as flow rate, flow 

resistance and shear stress.  

  

II.   FORMULATION OF THE PROBLEM 

 

Here we have considered the flow of blood through a 

multistenosed artery, to be laminar, steady and axially 

symmetric, incompressible, non-Newtonian and using 

Herschel Bulkley fluid model with axial variation of 

viscosity ,the expressions for flow parameters such as flow 

rate, flow resistance and shear stress are evaluated. The 

study is done for steady, laminar, fully developed flow, 

which is symmetric about the axis and one-dimensional. 

The geometry of the arterial segment having the multiple 

stenosis mathematically is given by [7] 

 
FIG 1 : Geometry of multiple stenosis 

𝑅(𝑧)

𝑅0

= {
1 − 𝐴[𝑑0

𝑠−1(𝑎𝑧 − 𝑘𝑑 − (𝑘 − 1)𝑑0) − (𝑎𝑧 − 𝑘𝑑 − (𝑘 − 1)𝑑0)𝑠]  

                                               ; 𝑘(𝑑 + 𝑑0) − 𝑑0 ≤ 𝑎𝑧 ≤ 𝑘(𝑑 + 𝑑0)

1                                                ;   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                          

 

where, h = 
𝛿

𝑅0
  and A = 

ℎ

𝑑0
𝑠

𝑠𝑠 (𝑠−1)⁄

(𝑠−1)
 

 𝛿(<< 𝑅0)  is the maximum height of the stenosis. 

Z = 
1

𝑎
{𝑘𝑑 + (𝑘 − 1)𝑑0 +

𝑑0

𝑠1 (𝑠−1)⁄ } 
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Where R(z) and R0 are the constricted and unconstricted 

radius of the artery respectively. Let L be the length of the 

artery, 𝑑0 is te length of the stenosis, d is distance between 

equi spaced point, k is number of the stenosis, a (≥ 1) is a 

parameter and s (≥ 2) is the shape parameter. 

The constitutive equation for Herschel-Bulkley fluid is 

given by [4], 

(−
𝜕𝑢

𝜕𝑟
)  =  {

1

𝜇(𝑧)
(𝜏 − 𝜏0)𝑛                 , 𝜏 ≥ 𝜏0

0                                        , 𝜏 < 𝜏0

    ----------(2.1)                    

Where u is the axial velocity of the blood, 𝜏 is the shear 

stress, 𝜏0 is the yield shear stress, 𝜇(𝑧) is the viscosity of 

the fluid in the axial direction and n is the fluid behaviour 

index. 

Viscosity in the axial direction is given by, 

𝜇(𝑧) = {
𝜇0 (

𝑅(𝑧)

𝑅0
)

−𝛼

;  𝑛(𝑑 + 𝑙0) − 𝑙0 ≤ 𝑎𝑧 ≤ 𝑛(𝑑 + 𝑙0)

𝜇0          ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                      
                                                                                                                                                                                                                                                                                                       

---------------(2.2) 

where 𝛼 is the parameter and 𝜇0 is the plasma viscosity. 

The boundary conditions are as follows, 

 
𝜕𝑢

𝜕𝑟
= 0 at r = 0                                             -------------(2.3a) 

u = 0 at r = R(z)                                           -------------(2.3b)                                                                                         

𝜏 𝑖𝑠 finite at r = 0                                         -------------(2.3c) 

P = 𝑃0 at z = 0 and P = 𝑃𝐿  at z = L              -------------(2.3d) 

Navier -Stokes equation in cylindrical coordinate system for 

blood is given by, 

0  = −
𝜕𝑝

𝜕𝑧
 −

1

𝑟

𝜕(𝑟𝜏)

𝜕𝑟
                                        -------------(2.4a)                   

0  =  
𝜕𝑝

𝜕𝑟
                                                         -------------(2.4b) 

 

III. SOLUTION OF THE PROBLEM 

 

Substituting the value of τ from equation (2.1) in the 

equation (2.4a), we get 

 0 = −
𝜕𝑝

𝜕𝑧
−

1

𝑟

𝜕

𝜕𝑟
[𝑟 {µ(𝑧)

1

𝑛 (−
𝜕𝑢

𝜕𝑟
)

1

𝑛
+  𝜏0}]   ------------(3.1)

                                  

Integrating equation (3.1) with respect to r we get, 

  (−
𝜕𝑢

𝜕𝑟
)

1

𝑛
=

1

µ(𝑧)
1
𝑛

[
𝑟

2
(−

𝜕𝑝

𝜕𝑧
) − 𝜏0]                --------------(3.2) 

The constant flux is given by, 

 𝑄 = ∫ 2𝜋𝑟𝑢𝑑𝑟
𝑅(𝑧)

0
= ∫ 𝜋𝑟2𝑅(𝑧)

0
(−

𝜕𝑢

𝜕𝑟
) 𝑑𝑟                           

   

 𝑄 = (−
1

2

𝜕𝑝

𝜕𝑧
)

𝑛 𝜋

𝜇(𝑧)
 I(𝑅(𝑧))                          --------------(3.3) 

where, 

  I(𝑅(𝑧)) =∫ [𝑟 +
2𝜏𝑜
𝜕𝑝

𝜕𝑧

]

𝑛

𝑑𝑟
𝑅(𝑧)

0
 

From (3.3), (−
1

2

𝜕𝑝

𝜕𝑧
) = 2(

𝑄𝜇(𝑧)

𝜋I(𝑅(𝑧))
)

1

𝑛
            ---------------(3.4)                                          

For solving pressure drop ∇𝑃, integrating (3.4) and using 

boundary condition (2.4d),  

𝛻𝑃 = – (𝑃𝐿 − 𝑃0) = 2 (
𝑄

𝜋
)

1

𝑛
∫ (

𝜇(𝑧)

𝐼(𝑅(𝑧))
)

1

𝑛
𝑑𝑧

𝐿

0
  ------------(3.5) 

 Flow resistance is given by, 

𝜆 =  
∇𝑃

𝑄
  =  2 (

𝑄1−𝑛

𝜋
)

1

𝑛
∫ (

𝜇(𝑧)

(𝑅(𝑧))
)

1

𝑛
 𝑑𝑧

𝐿

0
      ----------------(3.6) 

                                         

Shear stress is given by, 

𝜏 = 𝜏0  + [–
𝜕𝑢

𝜕𝑟
µ(𝑧)]

1

𝑛
 = 𝑟 (

𝑄𝜇(𝑧)

𝜋I(𝑅(𝑧))
)

1

𝑛
       ----------------(3.7) 

At r = R(𝑧) Shear stress is given by, 

𝜏 = R(𝑧) (
𝑄𝜇(𝑧)

𝜋I(𝑅(𝑧))
)

1

𝑛
 

For solving this problem, we consider two cases of viscosity 

variation.  

 

Case 1:  Consider  𝛼 = 1 in equation (2.2) i.e., linear 

variation of viscosity, then 

µ(𝑧) = µ
0

(
𝑅(𝑧)

𝑅0

)

−1

 

substituting the value of µ(𝑧) in equation (3.5), 

Then the Flow rate is given by, 

𝑄 = (−
1

2

𝜕𝑝

𝜕𝑧
)

𝑛 𝜋

µ0

𝑅(𝑧)

𝑅0
𝐼(𝑅(𝑧))                -----------------(3.8)                                                            

substituting the value of µ(𝑧) in equation (3.6), 

Flow resistance is given by, 

𝜆 =  
∇𝑃

𝑄
 = 2(

𝜇0𝑄1−𝑛

𝜋
)

1

𝑛
∫ (

1

𝐼(𝑅(𝑧))

 𝑅0

𝑅(𝑧)
)

1

𝑛
𝑑𝑧

𝐿

0
  -------------(3.9a)                              

 𝜆 = 2(
𝜇0𝑄1−𝑛

𝜋
)

1

𝑛
[∫ (

1

𝐼(𝑅(𝑧))

 𝑅0

𝑅(𝑧)
)

1

𝑛
𝑑𝑧 +

𝑘(𝑑+𝑑0)−𝑑0

0

    ∫ (
1

𝐼(𝑅(𝑧))

 𝑅0

𝑅(𝑧)
)

1

𝑛
𝑑𝑧 +

𝑘(𝑑+𝑑0)

𝑘(𝑑+𝑑0)−𝑑0

 ∫ (
1

𝐼(𝑅(𝑧))

 𝑅0

𝑅(𝑧)
)

1

𝑛
𝑑𝑧

𝐿

𝑘(𝑑+𝑑0)
] 

At R(𝑧) = 𝑅0, Flow resistance at the wall is given by, 

𝜆𝑤 = 2 (
µ0𝑄1−𝑛

𝜋
)

1

𝑛
∫ (

1

𝐼0(𝑅0)
)

1

𝑛
 𝑑𝑧

𝐿

0
          ----------------(3.9b)                                                  

where, 

𝐼0(𝑅0) = ∫ [𝑟 +
2𝜏𝑜
𝜕𝑝

𝜕𝑧

]

𝑛

𝑑𝑟
𝑅0

0
 

Then 𝜆− is given by, 

𝜆− =  
𝜆

𝜆𝑤
 =   

∫ (
1

𝐼(𝑅(𝑧))

 𝑅0
𝑅(𝑧)

)

1
𝑛

𝑑𝑧
𝐿

0

∫ (
1

𝐼0(𝑅0)
)

1
𝑛 𝑑𝑧

𝐿
0

                       --------------(3.10)                                                    

 

substituting the value of µ(𝑧) in equation (3.7), 

 

Shear stress for linear variation of viscosity 
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𝜏 = 𝑅(𝑧) (
𝑄𝜇0

𝜋𝐼(𝑅(𝑧))

𝑅0

𝑅(𝑧)
)

1

𝑛
                     -----------------(3.11a) 

At R(𝑧) = 𝑅0, Shear stress at the wall is given by, 

𝜏𝑤 = 𝑅(𝑧) (
𝑄𝜇0

𝜋𝐼(𝑅0)
)

1

𝑛
                           ------------------ (3.11b)                                                                        

Then 𝜏− is given by, 

𝜏− = 
𝜏

𝜏𝑤
 = (

𝑅(𝑧)

𝑅0
)

𝑛−1

𝑛
 (

𝐼0(𝑅0)

𝐼(𝑅(𝑧))
)

1

𝑛
                    ------------- (3.12) 

Case 2: Consider 𝛼 = 2 in equation (2.2), i.e., quadratic 

variation of viscosity, then 

µ(𝑧) = µ
0

(
𝑅(𝑧)

𝑅0

)

−2

 

substituting the value of µ(𝑧) in equation (3.5), 

Then the Flow rate is given by, 

𝑄 = (−
1

2

𝜕𝑝

𝜕𝑧
)

𝑛 𝜋

µ0
(

𝑅(𝑧)

𝑅0
)

2

𝐼(𝑅(𝑧))                ------------(3.13) 

substituting the value of µ(𝑧) in equation (3.6), 

Flow resistance is given by, 

𝜆 =  
∇𝑃

𝑄
 = 2(

𝜇0𝑄1−𝑛

𝜋
)

1

𝑛
∫ (

1

𝐼(𝑅(𝑧))
(

 𝑅0

𝑅(𝑧)
)

2

)

1

𝑛
𝑑𝑧

𝐿

0
    ------(3.14a) 

𝜆 = 2(
𝜇0𝑄1−𝑛

𝜋
)

1

𝑛
[∫ (

1

𝐼(𝑅(𝑧))
(

 𝑅0

𝑅(𝑧)
)

2

)

1

𝑛
𝑑𝑧 +

𝑘(𝑑+𝑑0)−𝑑0

0

    ∫ (
1

𝐼(𝑅(𝑧))
(

 𝑅0

𝑅(𝑧)
)

2

)

1

𝑛
𝑑𝑧 +

𝑘(𝑑+𝑑0)

𝑘(𝑑+𝑑0)−𝑑0

∫ (
1

𝐼(𝑅(𝑧))
(

 𝑅0

𝑅(𝑧)
)

2

)

1

𝑛
𝑑𝑧

𝐿

𝑘(𝑑+𝑑0)
] 

At R(𝑧) = 𝑅0, Flow resistance at the wall is given by, 

𝜆𝑤 = 2 (
µ0𝑄1−𝑛

𝜋
)

1

𝑛
∫ (

1

𝐼0(𝑅0)
)

1

𝑛
 𝑑𝑧

𝐿

0
      ------------------(3.14b)                                                                                                            

Then 𝜆− is given by, 

𝜆− =  
𝜆

𝜆𝑤
 =   

∫ (
1

𝐼(𝑅(𝑧))
(

 𝑅0
𝑅(𝑧)

)
2

)

1
𝑛

𝑑𝑧
𝐿

0

∫ (
1

𝐼0(𝑅0)
)

1
𝑛 𝑑𝑧

𝐿
0

                -----------------(3.15)                                                  

substituting the value of µ(𝑧) in equation (3.7), 

Shear stress for quadratic variation of viscosity, 

𝜏 = 𝑅(𝑧) (
𝑄𝜇0

𝜋𝐼(𝑅(𝑧))
(

 𝑅0

𝑅(𝑧)
)

2

)

1

𝑛
               -------------------(3.16a)                                                             

At R(𝑧) = 𝑅0, Shear stress at the wall is given by, 

𝜏𝑤 = 𝑅(𝑧) (
𝑄𝜇0

𝜋𝐼(𝑅0)
)

1

𝑛
                           -------------------(3.16b) 

 

Then 𝜏− is given by, 

𝜏− = 
𝜏

𝜏𝑤
 = (

𝑅(𝑧)

𝑅0
)

𝑛−2

𝑛
 (

𝐼0(𝑅0)

𝐼(𝑅(𝑧))
)

1

𝑛
         --------------------(3.17) 

 

 

 

IV. RESULT AND DISCUSSION  

 

In this section, the numerical results for flow parameters 

such as flow rate, resistance to flow and wall shear stress 

are presented in the presence of multiple stenosis 

considering axial variation of viscosity. The problem is 

solved analytically and all results are shown graphically 

using MATLAB software. 

In FIG 2(a) and 2(b), the graph has been plotted between 

the flow rate and the axis of the artery varying the fluid 

behavior index and yield stress respectively. The graph 

shows that while moving along the axis flow rate first 

decreases, after reaching at the maximum height of stenosis 

it reaches to the minimum and then come back to its initial 

state. Due to presence of the multiple stenosis again the 

flow decreases and returns to initial flow. In FIG 2(c), the 

graph shows the comparison of flow rate between linear and 

quadratic variation of the viscosity. It is observed that flow 

rate in case of linear variation is more as compared to the 

quadratic variation of viscosity. 

In FIG 3(a) and 3(b), graph shows the variation of flow rate 

with the size of the stenosis varying fluid behavior index 

and yield stress respectively. It is observed that as the size 

of stenosis is increased, flow rate is decreased with the 

increase in the value of n and 𝜏0. In FIG 3(c), the graph 

shows the comparison of flow rate between linear and 

quadratic variation of the viscosity. It is observed that flow 

rate in case of linear variation is more as compared to the 

quadratic variation of viscosity. 

In FIG 4(a) and 4(b) graph have been plotted for the flow 

resistance and size of the stenosis varying n and 𝜏0 

respectively.  It is noticed that flow resistance increases as 

size of the stenosis increases. And as the value of n and 𝜏0 

increases, flow resistance decreases. In FIG 4(c), the graph 

shows the comparison of flow resistance between linear and 

quadratic variation of the viscosity. It is observed that flow 

resistance in case of linear variation is more as compared to 

the quadratic variation of viscosity.  

In FIG 5(a) and 5(b), the graph have been plotted between 

shear stress and size of the stenosis for the distinct values of 

n and 𝜏0. It is noticed that wall shear stress increases as the 

size of stenosis increases. It is also noticed that with 

increase in fluid behavior index n, wall shear stress 

increases and with yield stress  𝜏0,wall shear stress 

decreases. In FIG 5(c), the graph shows the comparison of 

wall shear stress between linear and quadratic variation of 

the viscosity. It is observed that wall shear stress in case of 

quadratic variation is more as compared to the linear 

variation of viscosity. 

 

 

 
FIG 2(a): Graph of flow rate versus axis of the artery 

varying fluid behavior index n 
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FIG 2(b): Graph of flow rate versus axis of the artery yield 

stress 𝜏0 

 

 

FIG 2(c): Comparison of flow rate between linear and 

quadratic variation of the viscosity. 

 

 
FIG 3(a): Graph of flow rate versus size of the stenosis 

varying fluid behavior index n 

 

 
FIG 3(b): Graph of flow rate versus size of the stenosis 

varying yield stress 𝜏0 

 

 
FIG 3(c): Comparison of flow rate between linear and 

quadratic variation of the viscosity varying the fluid 

behavior index n 

 

 
FIG 4(a): Graph of flow resistance versus size of the 

stenosis varying fluid behavior index n 
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FIG 4(b): Graph of flow resistance versus size of the 

stenosis varying yield stress 𝜏0 

 
FIG 4(c): Comparison of flow resistance between linear and 

quadratic variation of the viscosity varying the fluid 

behavior index n 

 
FIG 5(a): Graph of flow wall shear stress versus size of the 

stenosis varying fluid behavior index n 

 

 
FIG 5(b): Graph of flow wall shear stress versus size of the 

stenosis varying yield stress 𝜏0 

 
FIG 5(c): Comparison of shear stress between linear and 

quadratic variation of the viscosity varying the fluid 

behavior index n 
 

 

V. CONCLUSION 

 

This section of the paper devoted to the influence of linear 

and quadratic variation of viscosity of blood in the 

presence of multiple stenosis. Expressions are evaluated 

for the flow parameters such as flow rate, flow resistance 

and wall shear stress. Results are discussed with the help 

of graphs. It can be seen  flow rate decreases as the size of 

the stenosis increases while flow resistance and wall shear 

stress increases on increasing the size of the stenosis and 

further it is also noticed that flow rate in case of linear 

variation of viscosity has slightly greater values as 

compared to the case of quadratic variation of viscosity 

where as flow resistance and wall shear stress in case of 

linear variation of viscosity has slightly less values as 

compared to the case of quadratic variation of viscosity. 
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