Some studies on Simple Weak Alternative Novikov Rings

S Supriya ${ }^{\# 1}$, Prof.R Bhuvana Vijaya ${ }^{* 2}$
\#Research Scholar, Dept of Mathematics, JNTUA, Ananthapuram
"Professor, Dept of Mathematics, JNTUA,Ananthapuram
${ }^{1}$ ecsupriya@gmail.com
${ }^{2}$ bhuvanarachamalla@gmail.com

Abstract

In this paper we studied Associative of a ring on an alternative ring with an idempotent $E * 0$, when the condition $R_{y} R_{j j}=R_{u}$ and verification of a ring is mandatorily associative on a semiprime alternative ring that satisfies the weak identity of Novikov $y(w, x, z),=$ ($w, x, y z$). Also Verified ring is associative if R is alternative satisfies weak Novikov identity and is semiprime on Simple Weak Alternative Novikov Rings.

Key words: Alternative rings, Semi prime, Novikov identity

I. INTRODUCTION

Simple finite dimensional strongly Novikov algebras over a field has been classified by E.I.Zelmanov [1] and the rings are both associative and commutative. Kleinfeld and Smith generalised this result to weakly Novikov rings [2]. The weak Novikov identity is satisfied through the Right alternative $\operatorname{asy}(\mathrm{w}, \mathrm{x}, \mathrm{z})=(\mathrm{w}, \mathrm{x}, \mathrm{yz})$ [3]. Also, it was validated that weak Novikov rings which are semiprime flexible are associative [4], This result complements the study of right alternative rings that satisfy the weak Novikov identity. So that strongly Novikov rings are not aassociative rings subclass. Since $(w x)(y z)-w(x . y z)=$ $(w, x, y z)=y(w, x, z)=y(w x . z)-y(w . x z)$, strongly Novikov rings are weakly Novikov.

II.PROPOSED THEOREMS

Kleinfeld studied and proved that a rings with simple alternative property is either Associative or CayleyDickson algebra. In simple alternative rings we can see that fourth powers of commutators are in the nucleus [5]. Kleinfeld and Smith [6] proved that when is R is associative simple right alternative ring which is 2divisible has the commutators in the left nucleus.

Simple Right Alternative Rings :
"Right alternative rings were first studied by A.A. Albert, who showed that a semi-simple right alternative algebra over a field is alternative" [7],
In 2- divisible rings with right alternative the following identity is hold:
$(w, y,(z, x))+(w y, z, x)=(w, z, x) y+w(y, z, x) \ldots \ldots$.
In arbitrary rings the two identities hold:
$(w, x, y) z+w(x, y, z)=(w x, y, z)-(w, x y, z)+(w, x$, yz)....... 2
$(\mathrm{z}, \mathrm{x}, \mathrm{y})+(\mathrm{x}, \mathrm{y}, \mathrm{z})+(\mathrm{y}, \mathrm{z}, \mathrm{x})=(\mathrm{zx}, \mathrm{y})+(\mathrm{xy}, \mathrm{z})+(\mathrm{yz}, \mathrm{x})$
3

Lemma 1: $\sum R+(R, R)=R$

Proof:

$I=(R, R) R+I(R, R)$ is a two-sided ideal, using the subset of $N t$ in the form of (R, R). The ideal is a non-zero, when the ring R is non commutative, simple and equal to I
If n . Replace w with n in 2 . yields
$\mathrm{n}(\mathrm{x}, \mathrm{y}, \mathrm{z}))=(\mathrm{nx} . \mathrm{y} . \mathrm{z}) ~ 4$
Since $(y, z(n, x))=$,0 we get
$(\mathrm{nx}, \mathrm{y}, \mathrm{z})=(\mathrm{xn}, \mathrm{y}, \mathrm{z})=\mathrm{n}(\mathrm{x}, \mathrm{y}, \mathrm{z})5$

Assume p,q N_{i}. Then $\mathrm{p}(\mathrm{xq}, \mathrm{y}, \mathrm{z})=\mathrm{p} . \mathrm{q}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{pq} .(\mathrm{x}$, $\mathrm{y}, \mathrm{z})$
$(p x . q, y, z)=(p . x q, y, z)=(p x . y . z) q=(x, y, z) q \cdot p=(x$, $\mathrm{y}, \mathrm{z})$ qp.
using 5 and the Nt definition
$(x, y, z)(p, q)=0$, or

The ideal of associator $A=(R, R, R) R+R(R, R, R)$. Since $\left(\mathrm{N}, \mathrm{N}_{\mathrm{i}}\right) \quad \mathrm{N}$ which obtained from 5
(N) A $(\mathrm{N}) \mathrm{t}=0$, with R is non associative and simple, $A=R \neq 0 . R$ is simple,
$\left(\mathrm{N}, \mathrm{N}_{\mathrm{i}}\right) \mathrm{R}=0$. 7

From 1.it was obtained that
$(\mathrm{a}, \mathrm{b}, \mathrm{c})(\mathrm{x}, \mathrm{y})+\mathrm{a}((\mathrm{x}, \mathrm{y}), \mathrm{b}, \mathrm{c})=(\mathrm{a},(\mathrm{x}, \mathrm{y}),(\mathrm{b}, \mathrm{c}))+(\mathrm{a}(\mathrm{x}, \mathrm{y})$, b,c)
However, (b, c, (x, y),) $=0$ and 4 implies
$(b, c, a(x, y))=(b, c, a)(x, y)$
$((\mathrm{a}, \mathrm{b}, \mathrm{c}),(\mathrm{x}, \mathrm{y}))=-((\mathrm{b}, \mathrm{c}), \mathrm{a},(\mathrm{x}, \mathrm{y}))$ 8

Because of right alternativity,
$-(\mathrm{a},(\mathrm{x}, \mathrm{y}),(\mathrm{b}, \mathrm{c})\}=(\mathrm{a},(\mathrm{b}, \mathrm{c}),(\mathrm{x}, \mathrm{y})) . \ldots \ldots ~ 9$

Applying the same permutation to 8 is given as,
$((a, b, c),(x, y))=-((a, x, y),(b, c),) . \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.
Now substitute $\mathrm{x}=\mathrm{p} \quad \mathrm{N}_{\mathrm{i}}$ and $\mathrm{y}=\mathrm{q} \quad \mathrm{N}_{\mathrm{i}}$ in 10.
$\{(\mathrm{a}, \mathrm{b}, \mathrm{c}),(\mathrm{p}, \mathrm{q}))=-((\mathrm{a}, \mathrm{p}, \mathrm{q}),(\mathrm{b}, \mathrm{c}))$ \qquad 11

It was found that,
$(\mathrm{a}, \mathrm{p}, \mathrm{q})=(\mathrm{p}, \mathrm{q}, \mathrm{a})+(\mathrm{a}, \mathrm{p}, \mathrm{q})+(\mathrm{q}, \mathrm{a}, \mathrm{p})=(\mathrm{pq}, \mathrm{a})+(\mathrm{ap}, \mathrm{q})$ $+(\mathrm{qa}, \mathrm{p})$ and substituting it in 11
$((\mathrm{p} . \mathrm{q}),(\mathrm{a} . \mathrm{b} . \mathrm{c}))=-((\mathrm{ap}, \mathrm{q}),(\mathrm{b}, \mathrm{c})+(\mathrm{qa}, \mathrm{p})+(\mathrm{pq}, \mathrm{a}))$.
Let additive group J be generated with the elements from $\left(\mathrm{N}_{\mathrm{i}}, \mathrm{N}\right)$,
Thus
$((a, b, c),(p, q))$ J. From 5, (a, b, c) (p, q) $=0$, sothat
(N, N) (R, R, R) J. 12
From $6(R, R)(N, N)=0$. Thus
$(\mathrm{N}, \mathrm{N})(\mathrm{R}, \mathrm{R})=\{(\mathrm{N}, \mathrm{N})(\mathrm{R}, \mathrm{R})\} \quad(\mathrm{N}, \mathrm{N}) \quad$,J or
$(\mathrm{Ni}, \mathrm{N}),(\mathrm{R}, \mathrm{R})$
$\mathrm{J} . \ldots ~$ 13 l

Lemma 2: Let R be an alternative ring with an idempotent $\mathrm{E} * 0$, when the condition $\mathrm{R}_{\mathrm{y}} \mathrm{R}_{\mathrm{ij}}=\mathrm{R}_{\mathrm{u}}$ is satisfied then the corresponding ring R is associative

Proof: $\mathrm{R}_{\mathrm{io}}=\left(\mathrm{e}, \mathrm{R}_{\mathrm{io}}\right)=-\left(\mathrm{R}_{\mathrm{io}} . \mathrm{e}\right)$ and Roi $=\left(\mathrm{R}_{\mathrm{oi}}, \mathrm{e}\right)$. Since E N , using lemma 2 ,
Both $R_{i 0}, R_{\text {oi }} \quad N$, where N is R based associative subring. So $R_{i 0} R_{o i}$ and $R_{\text {oi }} R_{i o} \quad N$. By the given condition R_{n} and $R_{o o} \quad N$. It follows that $R=R_{i 0}+R_{o o}+R_{o i}+R_{n} N$, Thus, R is associative ring.

Theorem 1: If R is a semiprime alternative ring that satisfies the weak identity of Novikov $y(w, x, z),=(w, x, y z)$ then R is mandatorily associative.

Proof: when the ring is alternative, then
$\left(y, z, x^{2}\right)=\left(x^{2}, y, z\right)=(y, z, x) x+x(y, z, x)$.
It was also observed that $x(y, z, x)=\left(y, z, x^{2}\right)$. For satisfying this from both
$(\mathrm{y}, \mathrm{z}, \mathrm{x}) \mathrm{x}$ and $(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{x}=0 \ldots \ldots \ldots .14$ and it as the alternative identities as
$(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{x}=(\mathrm{x}, \mathrm{y}, \mathrm{xz})=\left(\mathrm{x}^{2}, \mathrm{y}, \mathrm{z}\right)=\mathrm{x}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$
For achieving this condition, x^{2} should be in N
$x^{2} \quad$ N....... 15
when linearizing is applied over 15 and considering both x and $\mathrm{y} \in R$, we obtain
yx+xy N........... 16
For all $\mathrm{x}, \mathrm{y} \mathrm{g}$ R. However $\mathrm{n}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x}, \mathrm{y}, \mathrm{nz})$, and N is a R ideal, then
$\mathrm{NI}=0 . \ldots \ldots . \quad 17$
But R is semiprime implies $\mathrm{NnI}=0$, 18

Also $(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{w}+\mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \quad \mathrm{N}$ from 16 and it belongs to I . From 18 it follows that
$(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{w}+\mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0, \ldots \ldots . . \quad 19$
for all variables in 19 are taken from R .
Then, $\mathrm{u} \quad \mathrm{g}$
$\mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \cdot \mathrm{w}+\mathrm{w} \cdot \mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x}, \mathrm{y}, \mathrm{uz}) \mathrm{w}+\mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{uz})=0$, using 19
Thusanti-commutes for w gives,
$\mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{z}), \ldots \ldots \ldots . . \quad 20$
Now consider ($\mathrm{x}, \mathrm{wy}, \mathrm{vz}$). Using twice, this implies $\mathrm{v} \cdot \mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{w} . \mathrm{v}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \ldots \quad 21$

Integrating 20 and 21 it was obtained as $w(x, y, z) \cdot u=$ u(x,y,z).w...... 22

However from 19 we have $-(x, y, z) w=w(x, y, z)$. Substituting 22

- (x,y,z)w.u=u(x,y,z).w. \qquad 23

With anticommutation of u over ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) w from 20 result in w ($\mathrm{x}, \mathrm{y}, \mathrm{z}$).
Applying 19 in 23
$\mathrm{w} \cdot(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{u}=\mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \cdot \mathrm{w}24$ and it forms into

$$
\begin{equation*}
(\mathrm{u},(\mathrm{x}, \mathrm{y}, \mathrm{z}), \mathrm{w})=0 \tag{25}
\end{equation*}
$$

Hence ($\mathrm{R}, \mathrm{R}, \mathrm{R}$) $\quad \mathrm{N}_{\mathrm{n}} \mathrm{I}$. 26
But from 18, $\mathrm{N}_{\mathrm{o}} \mathrm{I}=0=(\mathrm{R}, \mathrm{R}, \mathrm{R})$
Thus, it was proved that R is associative and it is the proof of theorem.
The ring R that satisfied the identity $0=(x, y, y)$ is denoted as the right alternative ring and it also satisfied the weak identity of Novikov as,
$y(w, x, z)=(w, x, y z)$
The commutative centre C and right nucleus $\left(R_{n}\right)$ of the ring R is given as
$R_{n}=\{n R /(R, R, n)=0\}$ and $C=\{c \quad R /(R, c)=0\}$.
Let A be the ideal of associator that contains all finite associator sums and left associator multiples. From 3 the ring R with associator ideal may be given as all finite associators sums.
Lemma 3: If R is alternative satisfies weak Novikov identity and is semiprime then R is associative.
Proof: In an identity of alternative ring
$\left(x^{2}, y, z\right)=(y, z, x) x+x(y, z, x)=\left(y, z, x^{2}\right)$ [35]. On the other hand it is observed that $\mathrm{x}(\mathrm{y}, \mathrm{z}, \mathrm{x})=\left(\mathrm{y}, \mathrm{z}, \mathrm{x}^{2}\right)$ similarly $(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{x}=0$, so that
$(\mathrm{y}, \mathrm{z}, \mathrm{x}) \mathrm{x}=0$. 27
"At this point we have the alternative identity $0=(x, y, z)$ $x=(x, y, x z)$ [35], using 27 we get
$\left(x^{2}, y, z\right)=0$. Let N be the nucleus of R. we have shown that
$x^{2} N$, for all $x \quad R "$. 28

Linearizing 28, we obtain
$x y+y x \quad N$, for all x, y R. 29

Since for any alterative ring, $\mathrm{N}_{\mathrm{r}}=\mathrm{N}$
N is an ideal of R . 30
$\mathrm{NA}=0$. 31

With semi-prime hypothesis, 31 can be given as
$\mathrm{NnA}=0$. \qquad 32

From 28 and 32
$(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{w}+\mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ 33

Then for $u \quad R, w . u(x, y, z) w+u(x, y, z)=w(x, y, u z)$ $+(x, y, u z) w=0$, using 33. Thus
w anticommutes with $\mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ 34
now initialize ($\mathrm{x}, \mathrm{wy}, \mathrm{uz}$) and take u and w from associator in two different order as,
u. w $(x, y, z)=w . u(x, y, z)$ 35

By combining 35 with 34 we obtain
$\mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \cdot \mathrm{u}=\mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{z}) . \mathrm{w}$. \qquad 36

Substituting 36 in 37
$-(x, y, z) w \cdot u=u(x, y, z) . w$. \qquad37

With anticommutation of 34 and 33 with $w(x, y, z)$ and ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)wrespectively on 37 provided
v. $(x, y, z) w=v(x, y, z) . w$. \qquad 38

The associator form of 38 is given as
$(\mathrm{v},(\mathrm{x}, \mathrm{y}, \mathrm{z}), \mathrm{w})=0$. \qquad 39

From 39, the equivalent form can be given as,
(R,R,R) $\quad N_{n} A$ 40

This showed that R is associative.

REFERENCES

[1] E. I. Zelmanov, On a class of local translation invariant Lie algebras, Sov. Math. Dokl. 35 (1987), 216-218.
[2] Erwin, K., \& Smith, H. F. (1991). On simple rings with commutators in the left nucleus. Communications in Algebra, 19(5), 1593-1601.
[3] Kleinfeld, E. R. W. I. N., \& Smith, H. F. (1994). On Right Alternative Weakly Novikov Rings. Nova Journal of Algebra and geometry, 3, 73-81.
[4] Kleinfeld, E., \& Smith, H. F. (1994). On centers and nuclei in prime right alternative rings. Communications in Algebra, 22(3), 829-855.
[5] Albert, A. A. (1949). On right alternative algebras. Annals of Mathematics, 318-328.
[6] Kleinfeld, E. (1952). An extension of the theorem on alternative division rings. Proceedings of the American Mathematical Society, 3(3), 348-351.
[7] Kleinfeld, E. (1993)Prime alternative rings without nilpotent elements revisited, Houston Journal of Mathematics, Vol 19, No. 2, 325-326.

