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Abstract— This paper work describes the glycerol control system. The operation of the glycerol control system has been analyzed and 

actual showing intervals determined.The research part describes the research methods: First order time delay models, second order 

polynomial model, PID control algorithm, Cohen and Coon tuning rules. The goal of present work develop and investigate biomass 

growth control system in fed-batch operating mode bioreactor. This paper provides the develop and investigate a model for simulation of 

adaptive control system performance for tracking of specific growth rate at specific set point time trajectories and compare the result 

with ordinary control system performance indices. In the investigation part of the study, the calculation was made according to three 

different methods. The mathematical model parameters are obtained using an open loop test. The calculated reaction curve results are 

compared with experimental results using a second order polynomial method. The experimental results were carried out using an 

adaptive system and non-adaptive system methods. The results of the two methods were compared and the problem was solved. The 

tables of calculation with the results and the optimized results graphs are presented. Experimental calculations, programming and 

modelling performed using MATLAB/SIMULINK software. 

Index Terms— glycerol,PID, fed-batch, bioreactor. 

 

I.  INTRODUCTION 

Initially, some universal characteristics of bioreactors are 

highlighted with reference to control applications. Two 

main features, it is important to know before designing a 

control system for bioreactors, are:  

 The multivariable system, and 

 Non-linear dynamics. 

The control of a bioreactor comprises many variables. 

Device measurement and control technologies applied to a 

standard bioreactor are well known in classical process 

engineering [1]. 

1.1. Control system 

In recent years, control systems have played a central role 

in improving and advancing current technology and 

civilization. Practically each one of the subjects of our 

daily life is affected with the help of some system of 

manipulation. A bathroom, a tank, a refrigerator, an air 

conditioner, an ironing machine, a computerized iron, a 

vehicle, everything is a control system [2][1]. 

1.1.1. Open loop control systems 

Any physical system without any automatic correction of 

variation towards the output change which is called an 

open loop control system. This type of systems is simple 

to construct, stable and cheap but it will not maintain its 

accuracy and reliability. These systems do not have 

external disturbance to affect the output and it will not 

initiate correction action automatically [2].   

 

Fig.1. Block diagram of the open-loop control system [2] 

1.1.2. Closed loop control systems 

A closed loop control system is a system will maintain 

desired output values in accordance with input quantity in 

a closed loop manner, as shown in Figure 2. This type of  

systems is complicated to construct as compared to an 

open loop system [2]. 

1.1.3. Biomass Growth Control System 

In collaboration with NASA under the SBIR (Small 

Business Innovation Research) program, it is established 

by orbital technologies corporation to meet the growing 

needs of commercial, biotechnology and science plants in 

the era of the Space Station. The BPS was developed 

based on interactions with NASA engineers and scientists 

and on the "lessons learned" from already flown plant 

growth systems, including the ASTROCULTURETM 

unit, Plant Growth Plant and Bio-processing Apparatus of 

plants [3].   

 

Fig.2. Block diagram of closed loop control systems [2] 

1.2. Types of bioreactors or fermenters  

A biological reaction carried out into a vessel and culture 

aerobic cells are used for conducting enzymatic 

immobilization [4]. Different types of bio-reactor or 

fermenters: Continuous Stirred Tank Bioreactor: In a 

vessel, the time will no longer vary the contents to hold up 

of micro-organisms and the components will contain some 

concentration in the fermenter. To achieve steady-state 

conditions by chemo static principles. These types of 
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bioreactor are commonly used in a continuous process to 

activate in wastewater sludge industry. Airlift Bioreactor: 

The capacity, kinetic data, the specific growth rate is 

determined from rector volume of the organism used. The 

airlift pump works on a principle of fermenter are internal 

loop type and external loop type respectively. The 

uniform cylindrical cross type and has a configuration of 

the internal and external loop.Fluidized Bed Bioreactor: 

The regular particles contain some characteristics that are 

suspended in a flowing liquid stream with some additional 

gas phase is involved in this bioreactor, the tendency of 

particles which are involved in the bed that is less evenly 

distributed.Photo-Bioreactor: Phototrophic microorganism 

is used with some light source to cultivate. The 

photosynthesis is used by organisms to trigger biomass 

from the light source and carbon dioxide. The respective 

species are controlled for the artificial environment of a 

photobioreactor. In the photobioreactor, growth rate and 

level of purity in nature will be higher other than 

anywhere. Membrane Bioreactor: The various microbial 

bioconversions are applied successfully by membrane 

bioreactor. The alcoholic fermentation, solvents, organic 

acid production, wastewater treatment used in microbial 

conversions. The soluble enzyme and substrate are used in 

membrane bioreactor on one side of the ultrafilter 

membrane [5].  

1.3. The operating modes of bioreactor 

In a bioreactor, all the bioprocesses are carried out, where 

a microorganism like bacteria, fungi, yeast is cultivated 

under product formation conditions. For this reason, 

nutrients are compulsorily required to grow and under 

some conditions like temperature, pressure, PH and 

oxygen concentration are required to control the 

microorganism and these are the basic requirements to 

control bioprocess in a bioreactor [6].Batch mode, in this 

mode no substrate is added to the initial charge and no 

product is taken until it finishes the process. In batch 

operation have a major advantage for low investment cost, 

it does not require much control and without skilled labor, 

it can be accomplished operation. It has greater flexibility 

can be accomplished by using a bioreactor in various 

fields of product [6]. Fed-batch mode, in this mode during 

operation substrates are fed into the bioreactor. The 

combination of the batch and continuous operation are 

very popular in the ethanol industry. It has the main 

advantage is that inhibition and catabolite repression are 

avoided and additionally improves the productivity of the 

broth by holding at a low substrate concentration [6]. The 

continuous mode in this mode the substrate is added 

continuously until it finishes the process and product 

removal. In this process, the product is taken from the top 

of the bioreactor such as ethanol, cells and residual sugar 

as shown in Figure 3. Here operation is classified into two 

types, single stage continuous fermentation and multi-

stage continuous fermentation [6]. The research part 

describes the research methods, first order time delay 

models, second order polynomial model, PID control 

algorithm, Cohen and Coon tuning rules Experimental 

calculations, programming and modelling performed 

using MATLAB/SIMULINK software. 

 

Fig.3. Alternate stirred bioreactor processes [7] 

II. LITERATURE SURVEY 

In microbiology, researchers often faced problems in 

describing the growth-rate of microorganisms growing on 

sub-strategy or in the study of competition through 

depletion resource. Improved growth rate and growth 

function from a mathematical model of flocs and 

microbial using negative feedback density-dependent 

process Compared growth rate and cell size in 

homeostasis at the metabolic signal in the cell division 

according to animal cell [8][9].Obtained biofilm growth 

from purple non-sulfur bacteria using a mathematical 

model of photo-bioreactor. The synthesis, design, and 

decision making related to the wastewater treatment 

process modelling Measured leaf chlorophyll from 

biomass production under various heat stress treatments 

during climate change occur in critical wheat production 

[10] [11]. Developed leaf elongation and leaf appearance 

derived from maize production during crop modelling and 

climate change condition [13]. 

Identified heat stress and grain filling in leaf chlorophyll 

of photosynthesis during leaf area index dynamics are 

carried in climate change for wheat production. The 

Wheat Grow model is a process-based wheat model, 

which can predict wheat phenology, photosynthesis and 

biomass production, biomass partitioning and organ 

establishment, and grain yield and quality formation under 

various environmental factors and management practices 

[10]. Compared to large cells and small cells are achieved 

multiple signaling pathways in cell division of growth rate 

and cell cycle progression helps to find in homeostasis [8]. 

Indicated unidentified extracellular components from 

bacteria will increase biomass and lipid productivities in a 

co-cultivation of algae and will reduce the expenditure in 

mass algae cultivation process in microorganisms [12]. 

2.1. Mathematical modelling of Fed-batch 

fermentation   

Maximized enzyme activity by reducing metabolic heat 

and feeding inlet air in solid-state fermentation of a fixed 

bed reactor [14]. Developed excessive lovastatin 3.5-fold 

by microparticles of the preculture during bioreactor 

process [15]. Improved simultaneously high solids of 

saccharification and fermentation by recycle membrane 

from paper production of lactic acid [16]. The developed 

dynamic model for metabolic pathway in a sequential 

identification method [17]. Modified ethanol production at 

different temperature in the production of wine using 

yeast hinder [18]. Removed aerobic oxide of biomass 

segmentation with ammonium-oxidizing and nitrite-

oxidizing impact on microbial [19]. Developed growth 

and decline phase of specific growth rate and biomass 

estimation in penicillin production of microorganisms 

[20]. Integrated model computation and biomass model of 
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NIR data applied control overflow metabolism using 

partial least square and control a cholera-toxin in the 

monitor of batch cultivation [21]. Obtained numerical 

simulation of substrate feed rate in batch-to-batch process 

and leads to a robust process from measured problems in 

protein production [22]. Showed that heat capacity 

calorimeter of growth behavior will help to find validity 

and accuracy in a fermentation process used in many 

applications by this simple strategy [23]. Evidenced that 

glycan fractions with a heavy chain and the protein 

abundance enzyme to measure the time evolution of 

heterogeneities in pharmaceutical production as shown in 

Figure 4 [24][25]. Solved multi-objective optimization in 

a significant way the feed recipe helps to create 

productivity from dynamic optimization problems [26]. 

Showed the strain stability in ABE concentrations carried 

from oxygen tolerant process enforced by a butanol and 

acetate production [27]. Introduced multi-objective 

optimization in a distinct objective is computed to 

optimum algorithms for the productivity of dynamic 

optimization problems [26]. Observed enzyme activity of 

monoclonal antibodies in a bioreactor scale to improve 

intracellular clustering of micro-heterogeneities mining 

method for an absolute measure of scale in a 

pharmaceutical production [25]. Compared heat capacity 

calorimetry to compensation mode in a validity and 

accuracy, since mainly deal with PAT solution [23]. 

Analyzed the NIR data and EN data in partial least square 

with high correlation biomass, glucose, and acetate during 

monitoring and control of spectral identification [21]. 

Estimated the growth and decline phase for the 

development of control strategy in specific growth rate via 

online estimation method for specific production in 

penicillin production of bioprocess filamentous 

microorganisms to control quantitative and qualitative 

process [20]. 

 

Fig.4. Process optimization [24] 

2.2. Adaptive control system applied for biomass 

growth control in fed-batch cultivation processes 

The oxygen concentration in the exhaust gas and the air 

supply rate no need of a mathematical model for the 

culture of microorganisms under control using fed-batch 

cultivation process having inferential control algorithm 

[28]. The recombinant production systems for collecting 

the data straight forward by controlling experiments for 

optimization predefined specific growth rate of the green 

fluorescent protein for keeping a microbial cultivation 

process in a generic control model [29].In simulation 

experiment fast adaptation, robust behavior significant 

changes in control performance for controlling dissolved 

oxygen concentration into control algorithm of steady-

state action for adaptation controller to process on-

linearity and time-varying operating conditions of 

microbial process [30].The transient response and 

robustness sliding observer an estimation growth rate it is 

implemented to control law using Lyapunov functions 

feed-back proportional output error for nonlinear integral 

action of the biomass specific growth rate based on the 

minimal model paradigm. The yeast Saccharomyces 

cerevisiae in glucose-limited chemostat culture indeed the 

affinity of the enzyme its transport on the specific growth 

rate for its growth-limiting substrate [31].The recombinant 

proteins are produced more in the robust process which is 

reliable, fast for various monitoring techniques of the 

specific growth rate in the microbial fed-batch mode for 

real-time estimation and other measurable variables to 

grow the microorganisms essential in product quality [32]. 

The fermentation of glucose and acetate developed 

observer, estimator and controller in E.coli fed-batch 

fermentation desired recombinant protein for a specific 

growth rate it often related simulations by characterizing 

microorganisms [33]. Online regulation is usually limited 

to maintaining a small number of environmental 

conditions such as broth temperature, pH and dissolved 

oxygen level.  

 

Fig.5. Instrumentation and monitoring of bioreactor [34] 

Fermentation processes can also have a classical problem 

associated with interactions between multiple variable 

systems, which help complicate regulator regulation. The 

controller is usually tuned by loop loops, ignoring the 

effects of any process interactions. A trajectory of the 

benchmark that optimizes fermentation is difficult to 

specify and a more in-depth approach to specifications 

should be developed as shown in Figure 5 [34]. 

 

III. PROPOSED SYSTEM 

3.1.Development Of Adaptive Control Systems 
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The modelling of the modelled data management system 

structure is shown in Figure 6 an experimental research 

idea and experimental design of the subject was created. 

Based on polynomial results of gain coefficient(k), a time 

constant(T) and time delay (Tau) were evaluated, next 

moving to experimental results using the least square 

method. For example, the polynomial model of the 

process parameter was created, and the ACS model was 

created using the MATLAB/SIMULINK software tool. 

By modifying the control law adaptive system works 

slowly the time changes of any parameters of a specific 

system. ACS motivated to improve the performance of the 

fixed gain control system. The adaptive control can have 

less dependent to the accuracy of the mathematical models 

of the system, but fixed gain controller mainly relies on it, 

since there will be no variation in the system dynamics 

[35](appendix Number 14).  

 

Fig.6. Block scheme of ACS [35] 

The dynamic parameters of the system consist of the 

oxygen uptake rate(OUR) and the growing of specific 

growth rate(μ) for glycerol. In this parameter, the gain 

coefficient(k), time constant(T) and time delay(τ) is 

determined. The Cohen and Coon method (Smith method) 

is provided for tuning of the controller parameters. In both 

cases, the PID regulator's parameter remains the same as 

the algorithm for the regulatory variation. The differential 

parameter is integrated into the DEE block at the control 

object. 

Development of controller gain scheduling algorithm   

a) Design of ACS: 

The model of the control system, which compensates for 

the effect of the two major parts to develop the adaptive 

system, shown in Figure 32. The model system consists 

of(appendix Number 11, Number 12, Number 14, Number 

15 and Number 16 ): 

 Controller adaptation subsystem 

 PID controller subsystem 

 DEE block (Differential Equation Editor) 

 Process dynamic parameter subsystem 

 Measurement noise modelling subsystem 

Table 1. process model input 

Variable Description Inputs 

U Feeding rate U (1) 

Table 2. process model outputs 

Variable Description Output 

X Biomass 

concentration 

X (1) 

S Substrate 

concentration 

X (2) 

μ(SGR) Specific growth rate X (3) 

V Volume broth X (4) 

OUR Oxygen uptake rate OUR 

 

Fig.7. Block scheme of adaptative control system realized  

in MATLAB /SIMULINK environment 

b) On-line estimation of control process dynamic 

parameters   

The set algorithm parameter consists of the second order 

polynomial rules that calculate the gain coefficient(K), 

time constant(T) and time delay(τ) respectively. After the 

model is built in MATLAB/SIMULINK tool, the second 

order of the polynomial rules is entered the subsystem 

block containing the one variable, oxygen uptake rate at 

specific values of the specific growth rate [38].  The gain 

coefficient is calculated by function. 

K=a0+a1(OUR)+a2(OUR)
2
    

The time constant is calculated by function: 

T=a0+a1(OUR)+a2(OUR)
2
    

The time delay is calculated by function:   

τ=a0+a1(OUR)+a2(OUR)
2
    

Note: I have analyzed the data and found the reason for 

the 2 variable model identification problem. The problem 

is that the ranges of the OUR variation at various levels of 

mu are very different and the data obtained is not suitable 

for identification of the 2 variable relationships, covering 

full observed ranges of the mu and the OUR variations. 

So, for the μ controller adaptation, the algorithm based on 

the expert “IF-THEN” rules and the single variable OUR 

relationships can be used. 

c) PID controller gain scheduling algorithm 

The tuning method was selected to tune discrete PID 

control is calculated by using Cohen and Coon tuning 

rules [39]. They consist of a regulator gain factor, 

calculated according to the formula in the book, the 

integration time constant, calculated according to the 

formula in the book and the differentiation time constant, 

calculated according to the formula in the book. The 

formulas assume that the process is characterized by the 

first series of suffixes. the duration of the charge and the 

range of the constant ratio of time are in the rules of 

adjustment. 

 0.1<τpr/Tpr<1.0       (3.10) 
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A model MATLAB / SIMULINK developed for the 

tuning parameter compensation, calculated using 

subsystems block. Tuning parameters the regulator gain 

coefficient is calculated according to the formula [39]: 

 

    (3.11) 

Integration time constant is calculated according to the 

formula [39] 

       (3.12)  

The differentiation time constant is calculated according 

to the formula [39] 

       (3.13) 

d) The control algorithm of discrete PID 

controller 

The control system PID controller model consists of the 

input parameters that are entered in the formula (3.15). 

The obtained by rotating the engine of the modelled air 

water cooler according to the given data parameters 

available(appendix Number 15). 

 Present error signal - en 

 Previous error signal - en-1 

 Last two previous error signal - en-2 

 Proportional gain - Kr 

 Integration time constant - Ti 

 Differentiation time constant - Td 

 Discretization step – T 

 

Frequently used algorithms used by the regulator are 

reflected in the change of the controlling effect [39]: 

 Un = Un-1 + ∆Un        (3.14) 

All data is entered in a formula prepared by the PID 

editor, which calculates the engine brush N. The discrete 

change in the control effect of the PID controller is 

calculated according to the formula [39]:  

 

IV. RESULTS 

Experiment 1: The set-point of specific growth rate(μ) 

was changed from μset = 0.0501 h
-1

 to μset = 0.3 h
-1 

and 

simulation time 6 (h) as shown in Figure 33. The 

overshoot and settling time of the adaptive system is 

decreased 42 %, 34% compared to non-adaptive system 

respectively.  

Table 3. PID controller tuning parameters 

Model parameters 

(Initial 0.0501; Final 

0.3) 

Adaptive 

system 

Non-adaptive 

system 

Gain proportional 

(Kc) 

6.854 10 

Integration time 0.02669 0.0347 

constant (Ti) 

Differentiation time 

constant (Td) 

0.004103 0.00524 

 

Experiment 2: The set-point of specific growth rate(μ) 

was changed from μset = 0.5 h
-1

 to μset = 0.6 h
-1

 and 

simulation time 8 (h) as shown in Figure 34. The 

overshoot and settling time of an adaptive system is 

increased 73% and decreased  25%  compared to non-

adaptive system. 

Table 4. PID controller model parameters 

Model parameters 

(Initial 0.5; Final 0.6) 

Adaptive 

system 

Non-adaptive 

system 

Gain proportional (Kc) 34.75 10 

Integration time constant 

(Ti) 

0.0219 0.0313 

Differentiation time 

constant (Td) 

0.0034 0.0048 

 

Experiment 3: The set-point of specific growth rate(μ) 

was changed from μset = 0.2 h
-1

 to μset = 0.6 h
-1

 and 

simulation time 8 (h) as shown in Figure 35. The 

overshoot and settling time of the adaptive system is 

decreased 11 %, decreased 50% compared to non-adaptive 

system respectively. 

Table 5. PID controller model parameters 

Model parameters 

(Initial 0.2; Final 0.6) 

Adaptive 

system 

Non-adaptive 

system 

Gain proportional 

(Kc) 

17.05 30.5 

Integration time 

constant (Ti) 

0.02946 0.0288 

Differentiation time 

constant (Td) 

0.0045 0.0044 

 

Experiment 4:The set-point of specific growth rate(μ) was 

changed from μset = 0.4 h
-1

 to μset = 0.5 h
-1

and  simulation 

time 6 (h) as shown in the Figure 36. The overshoot and 

settling time of the adaptive system is decreased 19%, 

decreased 67% compared to non-adaptive system 

respectively. 

Table 6. PID controller model parameters 

Model parameters 

(Initial 0.4; Final 

0.5) 

Adaptive 

system 

Non-adaptive 

system 

Gain proportional 

(Kc) 

21.75 20 

Integration time 

constant (Ti) 

0.022 0.027 

Differentiation time 

constant (Td) 

0.0035 0.0041 
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Fig.8.  The simulation results show the dynamics of the 

process a)oxygen uptake rate (OUR), b) feeding rate (UF), 

c) gain proportional (Kc), d) integration time constant 

(Ti), e) differentiation time constant  (Td), f) specific 

growth rate  (μ) with setpoint control change from  (μset = 

0.0501 h
-1

 to μset=0.3 h
-1

) by automatic control system and 

simulation time is 6 (h) 

 

Fig.9. The simulation results show the dynamics of the 

process a)oxygen uptake rate (OUR), b) feeding rate (UF), 

c) gain proportional (Kc), d) integration time constant 

(Ti), e) differentiation time constant  (Td), f) specific 

growth rate  (μ) with setpoint control change from  (μset = 

0.5 h
-1

 to μset=0.6 h
-1

) by automatic control system and 

simulation time is 8 (h) 

 

Fig.10. The simulation results show the dynamics of the 

process a)oxygen uptake rate (OUR), b) feeding rate (UF), 

c) gain proportional (Kc), d) integration time constant 

(Ti), e) differentiation time constant  (Td), f) specific 

growth rate  (μ) with setpoint control change from  (μset = 

0.2 h
-1

 to μset=0.6 h
-1

) by automatic control system and 

simulation time is 8 (h) 

 

Fig.11. The simulation results show the dynamics of the 

process a)oxygen uptake rate (OUR), b) feeding rate (UF), 

c) gain proportional (Kc), d) integration time constant 

(Ti), e) differentiation time constant  (Td), f) specific 

growth rate  (μ) with setpoint control change from  (μset = 

0.4 h
-1

 to μset=0.5 h
-1

) by automatic control system and 

simulation time is 6(h) 

Experiment 5: The set-point of specific growth rate(μ) 

was changed from μset = 0.0501 h
-1

 to μset = 0.1 h
-1

 and 

simulation time 6 (h) as shown in Figure 37. The 

overshoot and settling time of the adaptive system is 

decreased 37 %, decreased 28.75%  compared to non-

adaptive system respectively. 
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Table7. PID controller model parameters 

Model parameters 

(Initial 0.0501; 

Final 0.1) 

Adaptive 

system 

Non-adaptive 

system 

Gain proportional 

(Kc) 

5.545 8 

Integration time 

constant (Ti) 

0.023 0.035 

Differentiation time 

constant (Td) 

0.0035 0.0052 

 

Experiment 6: The set-point of specific growth rate(μ) 

was changed from μset = 0.2 h
-1

 to μset = 0.5 h
-1

 and 

simulation time 6 (h) as shown in Figure 38. The 

overshoot and settling time of the adaptive system is 

decreased 17%, decreased 22.22%  compared to non-

adaptive system respectively. 

Table 8. PID controller model parameters 

Model parameters 

(Initial 0.2; Final 

0.5) 

Adaptive 

system 

Non-adaptive 

system 

Gain proportional 

(Kc) 

14.49 20 

Integration time 

constant (Ti) 

0.02643 0.0288 

Differentiation time 

constant (Td) 

0.004115 0.00438 

 

Experiment 7: The set-point of specific growth rate(μ) 

was changed from μset = 0.2 h
-1

 to μset = 0.3 h
-1

 and 

simulation time 6 (h) as shown in Figure 39. The 

overshoot and settling time of the adaptive system is 

decreased 75%, decreased 57.14% compared to non-

adaptive system respectively. 

Table 9. PID controller model parameters 

Model parameters 

(Initial 0.2; Final 

0.3) 

Adaptive 

system 

Non-adaptive 

system 

Gain proportional 

(Kc) 

7.613 15 

Integration time 

constant (Ti) 

0.0244 0.0281 

Differentiation time 

constant (Td) 

0.0038 0.0043 

 

Experiment 8: The set-point of specific growth rate(μ) 

was changed from μset = 0.3 h
-1

 to μset = 0.6 h
-1

 and 

simulation time 8 (h) as shown in Figure 40. The 

overshoot and settling time of the adaptive system is 

decreased 31 %, decreased 50% compared to non-adaptive 

system respectively. 

Table 10. PID controller model parameters 

Model parameters 

(Initial 0.3; Final 

0.6) 

Adaptive 

system 

Non-adaptive 

system 

Gain proportional 

(Kc) 

20.93 25 

Integration time 

constant (Ti) 

0.0264 0.0281 

Differentiation time 

constant (Td) 

0.0041 0.0043 

 

 

Fig.12.  The simulation results show the dynamics of the 

process a)oxygen uptake rate (OUR), b) feeding rate (UF), 

c) gain proportional (Kc), d) integration time constant 

(Ti), e) differentiation time constant  (Td), f) specific 

growth rate  (μ) with setpoint control change from  (μset = 

0.0501 h
-1

 to μset=0.1 h
-1

) by automatic control system and 

simulation time is 6(h) 

 

Fig.13. The simulation results show the dynamics of the 

process a)oxygen uptake rate (OUR), b) feeding rate (UF), 

c) gain proportional (Kc), d) integration time constant 
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(Ti), e) differentiation time constant  (Td), f) specific 

growth rate  (μ) with setpoint control change from  (μset = 

0.2 h
-1

 to μset=0.5 h
-1

) by automatic control system and 

simulation time is 6(h) 

 

Fig.14. The simulation results show the dynamics of the 

process a)oxygen uptake rate (OUR), b) feeding rate (UF), 

c) gain proportional (Kc), d) integration time constant 

(Ti), e) differentiation time constant  (Td), f) specific 

growth rate  (μ) with setpoint control change from  (μset = 

0.2 h
-1

 to μset=0.3 h
-1

) by automatic control system and 

simulation time is 6(h) 

 

Fig.15. The simulation results show the dynamics of the 

process a)oxygen uptake rate (OUR), b) feeding rate (UF), 

c) gain proportional (Kc), d) integration time constant 

(Ti), e) differentiation time constant  (Td), f) specific 

growth rate  (μ) with setpoint control change from  (μset = 

0.3 h
-1

 to μset=0.6 h
-1

) by automatic control system and 

simulation time is 8(h) 

Experiment 9: The set-point of specific growth rate(μ) 

was changed from μset = 0.3 h
-1

 to μset = 0.1 h
-1

 and 

simulation time 7 (h) as shown in Figure 41. The 

overshoot and settling time of the adaptive system is 

decreased 20 %, decreased 60% compared to non-adaptive 

system respectively. 

Table 11. PID controller model parameters 

Model parameters 

(Initial 0.3; Final 

0.1) 

Adaptive 

system 

Non-adaptive 

system 

Gain proportional 

(Kc) 

12.5 10 

Integration time 

constant (Ti) 

0.0167 0.0282 

Differentiation time 

constant (Td) 

0.0025 0.0043 

 

Experiment 10: The set-point of specific growth rate(μ) 

was changed from μset = 0.4 h
-1

 to μset = 0.1 h
-1

 and 

simulation time 7 (h) as shown in Figure 42. The 

overshoot and settling time of the adaptive system is 

decreased 45%, decreased 18.18 compared to non-

adaptive system respectively. 

Table 12. PID controller model parameters 

Model parameters 

(Initial 0.4; Final 

0.1) 

Adaptive 

system 

Non-adaptive 

system 

Gain proportional 

(Kc) 

6 15 

Integration time 

constant (Ti) 

0.0465 0.0304 

Differentiation time 

constant (Td) 

0.0070 0.0064 
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Fig.16. The simulation results show the dynamics of the 

process a)oxygen uptake rate (OUR), b) feeding rate (UF), 

c) gain proportional (Kc), d) integration time constant 

(Ti), e) differentiation time constant  (Td), f) specific 

growth rate  (μ) with setpoint control change from  (μset = 

0.3 h
-1

 to μset=0.1 h
-1

) by automatic control system and 

simulation time is 7(h) 

 

Fig.17. The simulation results show the dynamics of the 

process a)oxygen uptake rate (OUR), b) feeding rate (UF), 

c) gain proportional (Kc), d) integration time constant 

(Ti), e) differentiation time constant  (Td), f) specific 

growth rate  (μ) with setpoint control change from  (μset = 

0.4 h
-1

 to μset=0.1 h
-1

) by automatic control system and 

simulation time is 7(h) 

 

IV. CONCLUSION 

 

Analysis of Fed-batch cultivation process an object of 

monitoring and control and analysis of mathematical 

models applied for modelling of fed-batch cultivation 

processes are presented.MATLAB/SIMULINK model for 

simulation of E. coli fed-batch cultivation is developed 

and applied for investigation of the controlled process 

dynamics at various cultivation conditions.  

3. PID controller gain scheduling algorithm is developed 

for controller adaptation to time-varying cultivation 

conditions. In the adaptation algorithm, the biomass 

specific growth rate and the oxygen uptake rate are used 

as gain scheduling variables. MATLAB/SIMULINK 

models are developed for modelling of ordinary and the 

adaptive control systems. Simulation results of the 

investigated control systems performance under various 

cultivation conditions show that the adaptive control 

system outperforms the ordinary system. An overshoot of 

specific growth rate step response decreases in  (11%-

75%) and settling time decrease in (18.18%-67.63%).The 

presented specific growth rate controller adaptation 

approach can be applied for the development of biomass 

growth control systems of various fed-batch cultivation 

processes.   
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