
International Journal of Advanced Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.3,Issue.6,June.2017

www.ijastems.org Page 27

 Serial Peripheral Interface-Master Universal

Verification Component using UVM
P. Rajashekar Reddy, Assistant Professor

CVR College of Engineering College, ECE, Hyderabad, India

Email: raju.sheker@gmail.com

P.Sreekanth,Assistant Professor

CVR College of Engineering College, ECE, Hyderabad, India

Email: sreekanth.isoft@gmail.com

K.Arun Kumar,Assistant Professor

CVR College of Engineering College, ECE, Hyderabad, India

Email: arun.katkoori@gmail.com

Abstract— System level verification with scalable and reusable components provides a solution for current complex SOC

verification. UVM class library provides the building blocks needed to quickly develop reusable and well constructed verification

components. In this work, a verification environment using UVM is developed for SPI-Master. SPI protocol is commonly used for

communication in Integrated Circuits.

Index Terms—Universal Verification Methodology (UVM), Serial Peripheral Interface(SPI).

I. INTRODUCTION

 Based on the way the data is transmitted between

Integrated Circuits and On-board Peripherals, interfaces

are divided into two types, namely serial interface and

paralled interface. Serial communication is a common

method of transmitting data between a computer and a

peripheral device. Serial communication transmits data

one bit at a time, sequentially, over a single

communication line to a receiver. One of the well known

Serial interfaces is the Serial Peripheral Interface (SPI).

SPI was first developed by Motorola Semiconductor. SPI

interfaces are usually full duplex in nature and operate as

master-slave. SPI bus consists of four signals master out

slave in (MOSI), master in slave out (MISO), serial clock

(SCK), and active-low chip select (CS).

 The paper is based on the development of verification

environment using UVM. The UVM itself is a library of

base classes which facilitate the creation of structured

testbenches using code which is open source and can be

run on any SystemVerilog IEEE 1800 simulator. In UVM,

constrained random testing vectors are generated

automatically and driven into the DUT for higher

functional coverage. The verification result shows the

effectiveness of the proposed verification environment,

which is of great feasibility for further extension and

reuse.

 The Importance of verification is:

 70% of design effort goes to verification.

 Verification is on the critical path.

 Verification time can be reduced through abstraction.

 Using abstraction reduces control over low level details.

 Verification time can be reduced through automation.

 Randomization can be used as an automation tool.

II. SERIAL PERIPHERAL INTERFACE

 The SPI module allows a full duplex, synchronous,

serial communication between the MCU and peripheral

devices. Serial Peripheral Interface (SPI) is an interface

bus commonly used to send data between microcontrollers

and small peripherals such as shift registers, sensors, and

SD cards. It uses separate clock and data lines, along with

a select line to choose the device you wish to talk to.

 The serial data transfer involves 4 serial signals –

Serial clock (SCLK), Master in Slave out (MISO), Master

out Slave in (MOSI) and Slave Select (SS). Serial clock

generates clock based on the master clock. The SPI

operates in 4 different modes, based on the data

transmitting and receiving on rising or falling edge of the

serial clock. The 4 different modes are controlled the two

registers, namely – Clock Phase register (CPHA) and

Clock Polarity register (CPOL). The CPHA register

decides the clock edge at which the data to be transmitted.

The CPOL register decides the clock edge at which the

data to be sampled.

Figure 1: SPI Schematic diagram

 Master Out Slave In (MOSI) - The MOSI line is

configured as output in a master device and as an input

in a slave device. It is one of the two lines that transfer

serial data in one direction, with the most significant bit

sent first.

 Serial Clock (SCK) - The serial clock is used to

synchronize data movement both in and out of the

device through its MOSI and MISO lines. The Master

and Slave devices are capable of exchanging a byte of

information during a sequence of eight clock cycles.

Since SCK is generated by the master device, this line

becomes an input on a slave device.

 Slave Select (SS_bar) - The slave select input line is

used to select a slave device. It has to be low prior to

data transactions and must stay low for the duration of

the transaction.

mailto:raju.sheker@gmail.com
mailto:sreekanth.isoft@gmail.com
mailto:arun.katkoori@gmail.com

International Journal of Advanced Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.3,Issue.6,June.2017

www.ijastems.org Page 28

 Master In Slave Out (MISO) - The MISO line is

configured as an input in a master device and as an

output in a slave device. It is one of the two lines that

transfer serial data in one direction, along with the most

significant bit sent first. The MISO line of a slave device

is placed in the high-impedance state if the slave is not

selected.

III. SPI DATA TRANSMISSION

 The SPI has four modes of operation. The clock

polarity is specified by the CPOL control bit, which

selects an active high or active low clock. The clock phase

(CPHA) control bit selects one of the two fundamentally

different transfer formats.

 CPOL-SPI Clock Polarity Bit

To transmit data between SPI modules, the SPI modules

must have identical CPOL values. In master mode, a

change of this bit will abort a transmission in progress and

force the SPI system into idle state.

1 = Active-low clocks selected. In idle state SCK is high.

0 = Active-high clocks selected. In idle state SCK is low.

 CPHA- SPI Clock Phase Bit

This bit is used to select the SPI clock format. In master

mode, a change of this bit will abort a transmission in

progress and force the SPI system into idle state.

1 = Sampling of data occurs at even edges (2, 4, 6) of the

SCK clock.

0 = Sampling of data occurs at odd edges (1, 3, 5) of the

SCK clock.

 The communication is initiated by the master all the

time. The master first configures the clock, using a

frequency, which is less than or equal to the maximum

frequency that the slave device supports. The master then

selects the desired slave for communication by pulling the

chip select (SS) line of that particular slave-peripheral to

low state. Data transfer is organized by using Shift register

with some given word size such

Figure 2: Timing diagram of different SPI modes

as 8- bits in both master and slave. While master shifts

register value out through MOSI line, the slave shifts data

in to its shift register and sends data to master from slave

by MISO line

IV. UNIVERSAL VERIFICATION

METHODOLOGY(UVM)

 To verify the functionality of the design, a

Verification environment is created in Universal

Verification Methodology (UVM). The UVM

environment is based on System Verilog. Based on the

requirements for the project, the following points are

considered while the verification architecture is built.

 Re-usability of the verification IP.

 Which building blocks the verification language can

support.

 Controllability in generation of the stimulus.

 Next phase is building the Verification environment.

 Final phase would be to verify the DUT (RTL code)

using the constructed verification environment.

 A design and testbench are first compiled, and then the

design and testbench are elaborated. Design and

elaboration happen before the start of simulation at time-

0. At time-0, the procedural blocks (initial and always

blocks) in the top-level module and in the rest of the

design start running. In the top-level module is an initial

block that calls the run_test() task from uvm_top, which

is the testcase we want to run. It is passed to simulator by

passing the test name or by using

“+UVM_TESTNAME=” switch. When run_test() is

called at time-0, the UVM pre-run() global function

phases (build(), connect(), end_of_elaboration(),

start_of_simulation() all execute and complete. The run()

phase is a taskbased phase that executes the entire

simulation, consuming all of the simulation time. When

the run() phase stops, the UVM post-run() global function

phases (extract(), check(), report() all run in the last time

slot before simulation ends. By default, when run_test() is

done, $finish is called to terminate the simulation. Phases

are a synchronizing mechanism for the environment. The

UVM provides the following predefined phases for all

uvm_components.

 Build - Depending on configuration and factory settings,

create and configure additional component hierarchies.

 Connect - Connect ports, exports, and implementations.

 End_of_elaboration - Perform final configuration,

topology, connection, and other integrity checks.

 Start_of_simulation - Do pre-run activities such as

printing banners, pre-loading memories, etc.

 Run - Most verification is done in this time-consuming

phase.

 Extract - Collect information from the run in

preparation for checking.

 Check - Check simulation results against expected

outcome.

 Report - Report simulation results.

A) UVM Verification Components

 Design Under Test - The design that is intended to be

verified .This is generally RTL description in any of the

HDL (Verilog, VHDL and System Verilog).This

International Journal of Advanced Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.3,Issue.6,June.2017

www.ijastems.org Page 29

completely describes the functionality of the design as

well the features to be verified.

 Interface - Interface serves as the actual link between

the design- under- verification and the verification

environment. It is a SystemVerilog interface. The

interface describes the pin - level description of the

DUT. An interface is basically a bundle of nets or wires.

 Virtual Interfaces - It provide a mechanism for

separating abstract models from the actual signals of the

design. A virtual interface allows the same instance or

the subprogram to operate on different parts of the

design. It dynamically controls the set of signals

associated with the subprogram, this allows passing the

same data over all the components.

 Transactions - Interfaces represent the input to the

DUT. The fields and attributes of transactions are

derived from the transaction‟s specification. In a test,

many data items are generated and those are sent to the

DUT via driver. Generally data item fields are

randomized using System Verilog constraints many

number of tests can be created.

 Agents - Most DUTs have a number of different signal

interfaces, each of which have their own protocol. The

UVM agent collects together a group of

uvm_components focused around a specific pin-level

interface. The purpose of the agent is to provide a

verification component which allows users to generate

and monitor pin level transactions.

 Sequence And Sequencer - A sequence is the series of

transaction and sequencer is used to control the flow of

transaction generation. A sequence is extended from

uvm_sequence class. uvm_sequencer does the

generation of this sequence of transaction. Driver

(extension of uvm_driver) takes the transactions from

Sequencer and processes the packets of data or drives

them to other component or to the DUT. It allows the

addition of constraints to the data item generated in the

sequence, thus bringing forth the corner cases.

 Driver - Driver is defined by extending uvm_driver.

Driver takes the transactions from the sequencer by

using seq_item_port. These transactions will be driven

to DUT as per the interface signal specifications. Then it

sends the transaction to scoreboard using

uvm_analysis_port. Task for resetting DUT and

configuring the DUT are also declared here. An instance

of the driver class is created in the environment class

and the sequencer is connected to it.

 Monitor - A monitor is a passive entity that samples

DUT signals but doesn„t drive them. A monitor collects

transactions (data items), extracts events, performs

checking and coverage, Optionally prints trace

information, checking typically consists of protocol and

data checkers to verify that the DUT Output meets the

protocol specification. Coverage is collected in the

monitor. It is implemented by extending the

uvm_monitor class and an instance is created in the

environment for hooking it up with DUT signals.

 Scoreboard - Scoreboard is implemented by extending

uvm_scorboard. Scoreboard has 2 analysis imports. One

is used to for getting the packets from the driver and

other from the receiver. Then the packets are compared

and if they don't match, then error is asserted. Compare

function of transaction class is used for comparison.

 Environment - Environment class is used to implement

verification environments in UVM. It is extension on

uvm_env class. The testbench simulation needs some

systematic flow like building the components,

connection the components, starting the components etc.

uvm_env base class has methods formalize the

simulation steps. All the methods inside environment

class are declared virtual. Virtual interface is created in

the environment and all other virtual functions of

environment class are extended. Our environment is the

top level of the class based part of the testbench.

 Testcases - The uvm_test class defines the test scenario

for the testbench for the DUT and is specified in the test.

Testcase contains the instance of the environment class.

This testcase creates an Environment object and defines

the required test specific functionality. Verification

environment contains the declarations of the virtual

interfaces. These virtual interfaces are pointed to the

physical interfaces which are declared in the top

module. These virtual interfaces are made to point to

physical interface in the testcase.

 Top Module - SystemVerilog interface instance is

created in this module. DUT instance is created and

hooked up with the interface instance. Clock generator

is implemented here. run_test method is called from

here. The test name can be implicitly passed or can be

passed as a command line argument during simulation.

V. RESULTS

 The below shown figures are the individual mode

output of the SPI with that of different 8-bit data for each

mode.

Figure 3: Output of SPI Mode 1

Figure 4: Output of SPI Mode 2

International Journal of Advanced Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.3,Issue.6,June.2017

www.ijastems.org Page 30

Figure 5: Output of SPI Mode 3

Figure 6: Output of SPI Mode 4

As per the SPI protocol the 16 bits data are transferred

between the SPI master and slave. As seen, during

simulation that the 16 bits data transfer takes 16 serial

clock pulses. Also, the data transmission between the SPI

master and slave is full duplex. The 16 bits data transfer

occurs in MISO and MOSI serial signals. The proposed

verification environment applies constrained random

technique to fulfill the configuration of verification

environment and DUT.

VI. CONCLUSION

In this paper, a uniform verification environment for SPI

master interface is developed with UVM. The proposed

multi-layer testbench is comprised of APB driver, SPI

slave, scoreboard, which are implemented with OOPs

concept. Furthermore, constrained random technique is

applied. The verification result provides good evidence for

the effectiveness of the proposed verification

environment.

REFERENCES
[1] Zhili Zhou, Zheng Xie, Xin‟an Wang and Teng Wang,

“Development of verification Environment for SPI Master

Interface Using SystemVerilog”, 978-1-4673-2197-

6/12/$31.00 ©2012 IEEE.

[2] Tianxiang Liu ”IP Design of Universal Multiple Devices SPI

Interface” IEEE.978-1-61284-632-3, 2011.

[3] M.Sandya1, K.Rajasekhar, “Design and Verification of

Serial Peripheral Interface”, International Journal of

Engineering Trends and Technology- Volume 3 Issue 4-

2012.

[4] Juan Francesconi, J. Agustin Rodriguez, Pedro M. Julian,

2014. UVM Based Testbench Architecture for Unit

Verification. ISBN: 978-987-1907-86-1 IEEE Catalog

Number CFP1454E-CDR.

[5] Alexander W. Rath, Volkan Esen and Wolfgang Ecker,

2014.ATransaction-OrientedUVM-BasedLibraryfor Verifi-

cation of Analog Behavior, IEEE- 978-1-4799- 2816-3, pp

806-811.

[6] K.Aditya, M. Sivakumar, Fazal Noorbasha and T. Praveen

Blessington “Design and Functional Verification of A SPI

Master Slave Core Using System Verilog” International

Journal of Soft Computing and Engineering (IJSCE) ISSN:

2231-2307, Volume-2, May 2012.

[7] Motorola Inc., “SPI Block Guide V03.06,” February 2003.

[8] Ccelleraorganization,“UniversalVerificationMethodology

(UVM) 1.1 Class Reference”, June 2011.

