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Abstract: This paper recommend a formula and structure of a BCD similar multiplier that uses some qualities of two different repetitive 

BCD requirements to accelerate its calculations. In this document, proposed a new techniques to lower the latency and region of past 

associate top rated implementations. The Limited items are produced in similar using a signed-digit radix-10 recoding of  BCD 

multiplier with the number set [-5, 5], and  set of beneficial multiplicand many (0X, 1X, 2X, 3X, 4X, 5X) written in excess-3 code(XS-3). 

The partial items can be recoded to the bombarded BCD reflection  (ODDS)  by just including a continuous aspect into the partial 

product decrease shrub. To demonstrate the key benefits of our  suggested structure, we have produced a RTL design for 16 x 16-digit 

multiplications and conducted a relative study of the current associate styles.  
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I.INTRODUCTION 

Decimal fixed-point and floating-point types are important 

in financial, professional, and user-oriented processing, 

where transformation and rounding mistakes that are 

natural to floating-point binary representations cannot be 

accepted. The new IEEE 754-2008 Conventional for 

Floating- Aspect Mathematics, which contains a structure 

and requirements for decimal floating-point (DFP) 

arithmetic has motivated a lot of research in decimal 

components. BCD encodes a wide range X in decimal 

(non-redundant radix-10) structure, with each decimal 

wide range Xi E [0,9] showed in a 4-bit binary wide range 

program. (1)it is a repetitive decimal reflection so that it 

allows carry-free creation of both simple and sophisticated 

decimal many (2X, 3X, 4X, 5X, 6X,. . .) In this work, we 

concentrate on the enhancement of similar decimal 

multiplication by taking benefit of the redundancy of two 

decimal representations: We recommend the use of a 

common repetitive BCD arithmetic (that contains the 

ODDS, XS-3 and BCD representations) to speed up 

similar BCD multiplication in two ways: Partial item 

creation (PPG).  

II. REDUNDANT BCD REPRESENTA-TIONS 

 The proposed decimal multiplier uses internally a 

redundant BCD arithmetic to speed up and simplify the 

implementation. This arithmetic deals with radix-10 ten’s 

complement integers of the form: 

 
where d is the number of digits, sz is the sign bit, and Zi E 

[l – e,m- e] is the ith digit, with 

 
Parameter e is the excess of the representation and usually 

takes values 0 (non excess), 3 or 6. The redundancy index 

p is defined as p=m-l+1-r, being r=10. On the other hand, 

the binary value of the 4-bit vector representation of Zi is 

given by 

 

 

 

zi;j being the jth bit of the ith digit. 

 
Note that bit-weighted codes such as BCD and ODDS use 

the 4-bit binary encoding (or BCD encoding) defined in 

Expression (2). Thus, Zi =[Zi] for operands Z represented 

in BCD or ODDS. In our work we use a SD radix-10 

recoding of the BCD multiplier [30], which requires to 

compute a set of decimal multiples ({-5X, . . . , 0X, . . . , 

5X}) of the BCD multiplicand. The main issue is to 

perform the x3.The nine’s complement of a positive 

decimal operand is given by 

 
The implementation of (9- Zi) leads to a complex 

implementation, since the Zi digits of the multiples 

generated may take values higher than 9.  

                               TABLE 1 

Nine’s Complement for the XS-3 Representation 

 
In Table 1 we show how the nine’s complement can be 

performed by simply inverting the bits of a digit Zi coded 

in XS-3. At the decimal digit level, this is due to the fact 

that: 
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for the ranges Zi E[-3,12] ([Zi] E [0, 15]). In summary, 

the main reasons for using the redundant XS-3 code are: 

(1) to avoid long carry-propagations in the generation of 

decimal positive multiplicand multiples, (2) to obtain the 

negative multiples from the corresponding positive ones 

easily. 

 

III.HIGH-LEVEL ARCHITECTURE 

The high-level prevent plan of the suggested similar 

structure for dx d-digit BCD decimal integer and fixed-

point multiplication is caved Fig. 1. It comprises of the 

following three stages1: (1) similar creation of limited 

items written in XS-3, such as creation of multiplicand 

many and recoding of the multiplier operand, (2) recoding 

of limited items from XS-3 to the ODDS reflection 

 
Fig. 1. Combinational SD radix-10 architecture 

Stage 1) Decimal partial product generation. Stage 2) 

Conversion to (non-redundant) BCD. The proposed 

architecture is a 2d-digit hybrid parallel prefix/carry-select 

adder, the BCD Quaternary Tree adder. We opt for 

representing operand A in BCD excess-6 (Ai e [0, 9], [Ai] 

= Ai + e, e =6), and B coded in BCD (Bi E [0, 9], e = 0). 

 

IV.DECIMAL PARTIAL PRODUCT GENERATION 

The partial product generation stage comprises the 

recoding of the multiplier to a SD radix-10 representation, 

the calculation of the multiplicand multiples in XS-3 code 

and the generation of the ODDS partial products. 

 
Fig. 2. SD radix-10 generation of a partial product digit. 

 

A. Generation of the Multiplicand Multiples 

Fig. 3 shows the high-level block diagram of the multiples 

generation with just one carry propagation. This is 

performed in two steps: 

 
Fig. 3. Generation of a decimal multiples NX. 

1)digit recoding of the BCD multiplicand digits Xi into a 

decimal carry 0< Ti<Tmax and a digit -3< Di <12- Tmax, 

such as 

 

 
being T max the maximum possible value for the decimal 

carry. 

2) The decimal carries transferred between adjacent digits 

are assimilated obtaining the correct 4-bit representation 

of XS-3 digits NXi, that is 

 
The constraint for NXi still allows different 

implementations for NX. Table 2 shows the preferred 

digit recoding for 

the multiples NX. 

 

Replacing the relation between NXi and [NXi] in the 

previous expression, it follows that 

 
B. Most-Significant Digit Encoding 

The MSD of each PP[k], PP[dk], is directly obtained in 

the ODDS representation. For positive partial products we 

have 

 
with Td-1 E {0, 1, 2, 3, 4}. Therefore the two cases can be 

expressed as 

 

 
With 

 
TABLE 2 

Preferred Digit Recoding Mappings for NX Multiples 
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C. Correction Term 

The pre-computed correction term is given by 

 
D. Product Array 

Fig. 4 illustrates the shape of the partial product array, 

particularizing for d =16. Note that the maximum digit 

column height is d+1. 

 
Fig. 4. Decimal partial product array generated for d =16 

V. DECIMAL PARTIAL PRODUCT REDUCTION 

The PPR tree consists of three parts: (1) a regular binary 

CSA tree to compute an estimation of the decimal partial 

product sum in a binary carry-save form (S, C), (2) a sum 

correction block to count the carries generated between 

the digit columns, Fig. 5 shows the high-level architecture 

of a column of the PPR tree (the ith column) with h  

 

 

 

 

 

 

 

ODDS digits in [0, 15] (4 bits per digit).  

Fig. 5. High-level architecture of the proposed decimal 

PPR tree (h inputs, 1-digit column). This difference, T, is 

computed in the sum correction block of every digit 

column and added to the partial product sum (S, C) in the 

decimal CSA. 

 

the contribution of the column i to the sum correction term 

T is 

given by 

Therefore, the sum correction is given by 

 
Consequently, the sum correction block evaluates Wix6. 

This module is composed of a m-bit binary counter and a 

x6 operator.  

VI.FINAL CONVERSION TO BCD 

 The chosen structure is a 2d-digit multiple identical 

prefix/ carry-select adder, the BCD Quaternary Shrub 

adder. To style the bring prefix tree we examined the 

indication appearance information from the PPRT tree. 

VII.  SYNTHESIS RESULTS 

Finally, we existing a more in depth evaluation of the 

quickest BCD 16x16-digit combinational multipliers in 

regards to latency and place. The corresponding place 

wait synthesis principles are proven in Fig.6. 

 
Fig. 10. Area-delay space for the fastest 16x16-digit 

mults. 

VIII. CONCLUSION 

 In this document we have provided the criteria and 

structure of a new BCD similar multiplier. The 

developments of the suggested structure depend on the use 

of certain repetitive BCD requirements, the XS-3 and 

ODDS representations. Limited items can be produced 

very quick in the XS-3 reflection using the SD radix-10 

PPG scheme: beneficial multiplicand many (0X, 1X, 2X, 

3X, 4X, 5X) are pre calculated in a carry-free way, while 

adverse many are acquired by bit inversion of the 

beneficial ones.  
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