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Abstract: This paper recommend a formula and structure of a BCD similar multiplier that uses some qualities of two different repetitive
BCD requirements to accelerate its calculations. In this document, proposed a new techniques to lower the latency and region of past
associate top rated implementations. The Limited items are produced in similar using a signed-digit radix-10 recoding of BCD
multiplier with the number set [-5, 5], and set of beneficial multiplicand many (0X, 1X, 2X, 3X, 4X, 5X) written in excess-3 code(XS-3).
The partial items can be recoded to the bombarded BCD reflection (ODDS) by just including a continuous aspect into the partial
product decrease shrub. To demonstrate the key benefits of our suggested structure, we have produced a RTL design for 16 x 16-digit
multiplications and conducted a relative study of the current associate styles.
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I.INTRODUCTION
Decimal fixed-point and floating-point types are important
in financial, professional, and user-oriented processing,
where transformation and rounding mistakes that are
natural to floating-point binary representations cannot be
accepted. The new IEEE 754-2008 Conventional for
Floating- Aspect Mathematics, which contains a structure
and requirements for decimal floating-point (DFP)
arithmetic has motivated a lot of research in decimal
components. BCD encodes a wide range X in decimal
(non-redundant radix-10) structure, with each decimal
wide range Xi E [0,9] showed in a 4-bit binary wide range
program. (1)it is a repetitive decimal reflection so that it
allows carry-free creation of both simple and sophisticated
decimal many (2X, 3X, 4X, 5X, 6X,. . .) In this work, we
concentrate on the enhancement of similar decimal
multiplication by taking benefit of the redundancy of two
decimal representations: We recommend the use of a
common repetitive BCD arithmetic (that contains the
ODDS, XS-3 and BCD representations) to speed up
similar BCD multiplication in two ways: Partial item
creation (PPG).
II. REDUNDANT BCD REPRESENTA-TIONS
The proposed decimal multiplier uses internally a
redundant BCD arithmetic to speed up and simplify the
implementation. This arithmetic deals with radix-10 ten’s
complement integers of the form:

d—1
Z = —s.>x 107 + D> Z; x 107,
i=Il
where d is the number of digits, sz is the sign bit, and Zi E
[I — e,m- €] is the ith digit, with
0<i<e, 9+e<m<2 —1(=15).

Parameter e is the excess of the representation and usually
takes values 0 (non excess), 3 or 6. The redundancy index
p is defined as p=m-I+1-r, being r=10. On the other hand,
the binary value of the 4-bit vector representation of Zi is
given by

zi;j being the jth bit of the ith digit.
Zj = [Z;] — €.

Note that bit-weighted codes such as BCD and ODDS use
the 4-bit binary encoding (or BCD encoding) defined in
Expression (2). Thus, Zi =[Zi] for operands Z represented
in BCD or ODDS. In our work we use a SD radix-10
recoding of the BCD multiplier [30], which requires to
compute a set of decimal multiples ({-5X, ..., 0X, ...,
5X}) of the BCD multiplicand. The main issue is to
perform the x3.The nine’s complement of a positive
decimal operand is given by

d—1

— 107 + > (9 — Z) =< 10°.

==
The implementation of (9- Zi) leads to a complex
implementation, since the Zi digits of the multiples
generated may take values higher than 9.

TABLE 1

Nine’s Complement for the XS-3 Representation
Digit Nine's Complement
4-bit Zi |4 4-bit 9-—Z; [0 — Zi]
Encoding Encoding (=15 — [Zi])
0000 -3 0 1111 12 15
0001 -2 1 1110 11 14
0010 -1 2 1101 10 13
0011 0 3 1100 9 12
0100 1 4 1011 8 11
0101 2 5 1010 7 10
0110 3 6 1001 6 9
0111 4 7 1000 5 8
1000 5 8 0111 4 7
1001 6 9 0110 3 6
1010 7 10 0101 2 5
1011 8 11 0100 1 4
1100 9 12 0011 0 3
1101 10 13 0010 -1 2
1110 11 14 0001 -2 1
1111 12 15 0000 -3 0

>

In Table 1 we show how the nine’s complement can be
performed by simply inverting the bits of a digit Zi coded
in XS-3. At the decimal digit level, this is due to the fact
that:
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for the ranges Zi E[-3,12] ([Zi] E [0, 15]). In summary,
the main reasons for using the redundant XS-3 code are:
(1) to avoid long carry-propagations in the generation of
decimal positive multiplicand multiples, (2) to obtain the
negative multiples from the corresponding positive ones
easily.

I1ILHIGH-LEVEL ARCHITECTURE
The high-level prevent plan of the suggested similar
structure for dx d-digit BCD decimal integer and fixed-
point multiplication is caved Fig. 1. It comprises of the
following three stagesl: (1) similar creation of limited
items written in XS-3, such as creation of multiplicand
many and recoding of the multiplier operand, (2) recoding
of limited items from XS-3 to the ODDS reflection

X (BCD) Y (BCD)
4u¢ 4d¢

Generation of multiples SD Radix-10 Recoder
5X 4X 2X
§ 40 1) faden) *—4.«:& 1) §aiden) #4:1 vbg, & %

XS-32 digits in [-3.12]

Yoy . &

Stage 1

Selection of multiples

- .
=~ Ybg ' &
PP[O]--- PP[K] - PP[d-1] PP[d]| ¢ SD radix-10 digits

a(d+1) __+_ l:gm,_t;H_ lﬂi(dﬂ)i“ -

a1 1 products
SLRR R IS,
d+1 Partial Product
Reduction Tree Stage 2

A (BCD excess- sﬁgd Sdi' B (sco) =

BCD Adder (2d digits)
Stage 3

8l
P {BCD) _|

Fig. 1. Combinational SD radix-10 architecture
Stage 1) Decimal partial product generation. Stage 2)
Conversion to (non-redundant) BCD. The proposed
architecture is a 2d-digit hybrid parallel prefix/carry-select
adder, the BCD Quaternary Tree adder. We opt for
representing operand A in BCD excess-6 (Ai e [0, 9], [Ai]
= Ai + ¢, e =6), and B coded in BCD (Bi E [0, 9], e = 0).

IV.DECIMAL PARTIAL PRODUCT GENERATION

The partial product generation stage comprises the
recoding of the multiplier to a SD radix-10 representation,
the calculation of the multiplicand multiples in XS-3 code
and the generation of the ODDS partial products.

X (BCD)
4dt
I x5 | x4 | x3 | x2 | ] X4+3 |
¢d(d+1) 4"4(d+1) ?"4(.1*1) J"A(un) rad
5X ax 3x 2X 1X
Digits in XS-3 [-3,12]
Yy (BCD)
4
Yo
Digits in XS=3 [=3,12] - SD Radix-10 AT
— 1-digit encoder f-—
X 4% 3% 2% 1% V5.Y4, Y3, Y211

{374

PP, [K]
Digit in ODDS [0,15]

Fig. 2. SD radix-10 generation of a partial product digit.

A. Generation of the Multiplicand Multiples

Fig. 3 shows the high-level block diagram of the multiples
generation with just one carry propagation. This is
performed in two steps:

Digit-set
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Fig. 3. Generation of a decimal multiples NX.
1)digit recoding of the BCD multiplicand digits Xi into a
decimal carry 0< Ti<Tmax and a digit -3< Di <12- Tmax,
such as

Di + 10 x Tz' = (N X Xz') + 3,

being T max the maximum possible value for the decimal
carry.

2) The decimal carries transferred between adjacent digits
are assimilated obtaining the correct 4-bit representation
of XS-3 digits NXi, that is

[NXi| = D; + T;1, [NXi] € [0, 15](NX; € [-3,12]).

The constraint for NXi still allows different
implementations for NX. Table 2 shows the preferred
digit recoding for
the multiples NX.

NX; = 15 — [NX]]

Replacing the relation between NXi and [NXi] in the
previous expression, it follows that

NX;=15- (NX; +3) = (9- NX;) 43,

B. Most-Significant Digit Encoding

The MSD of each PP[K], PP[dK], is directly obtained in
the ODDS representation. For positive partial products we
have

de[k] = Td—l

with Td-1 E {0, 1, 2, 3, 4}. Therefore the two cases can be
expressed as

Ppr;lk'-l =-104(9-Tpy)=-1-Ty

PPRy[k] = —8 + [PP4[K]),
With
[PPi[K]] = 8 — Yo + (1) Ty_y.

TABLE 2
Preferred Digit Recoding Mappings for NX Multiples
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C. Correction Term
The pre-computed correction term is given by

d—1
fold) = —8 = E 10544 __ 3
be=0

d—1 d—2
> i+ 1)10° d— 1 — &)1t ).
> ( )] )]

D. Product Array

Fig. 4 illustrates the shape of the partial product array,
particularizing for d =16. Note that the maximum digit
column height is d+1.

17 partial products: 17 (+1) digits wide
Highest columns: 17idiit5 height

S10000000000000000H
SO OOOOOOOOOSBCH)H1

S, DO000000OO! 2
S40 DOO00000000H,
sO00CO0000000000H 4
Se0 slelslele] 5
S,0000000000000000Hg
0000000000000 00H 7
S OO0COJOHOOOOO0OHS
5101000000000 O000Hg
54{000000000OO0O00H {4
S 1000000000000 0O0H 4

= OO000C00000G

FFFFFFFFFFFFFFFFHs
Final product: 32-digit wide

Sk : Sign encoding. ODDS digit in [3,12]

Hi: 10’s complement encoding: ¥s,+{0,3,7} . BCD digit in [0,8]

O : ODDS digit in [0,15]

F : Digit of operand XF or 0. ODDS digit in [0,15]

Fig. 4. Decimal partial product array generated for d =16
V. DECIMAL PARTIAL PRODUCT REDUCTION

The PPR tree consists of three parts: (1) a regular binary
CSA tree to compute an estimation of the decimal partial
product sum in a binary carry-save form (S, C), (2) a sum
correction block to count the carries generated between
the digit columns, Fig. 5 shows the high-level architecture
of a column of the PPR tree (the ith column) with h

To Column i+1 ! Column i From Column i=1
H

PP{0] PPkl PPih-1]

4 Neout carry carry N ’c‘[O] ain]
9‘2][‘3,]3'1'?1',‘,[[]9‘2‘{',,J,_', outputs inpulsqf 1 rmenin
i Degui h:2

;| binary CSA tree
(4-bit column)
Correction
sum block
HETE i
: WQ[O]m-eiL = i ! % iwg(o)
L Wolte W1}
B A T A e A OO,
! Gi1[0)n @iy 1] Binary (42):2 CSA (< G0)mngil-1]
: 4-bi ! :
CSA block AWz, 4J'rG, 42‘
21
Whi,; = <] Wh;
----------------------------------- R

ODDS digits in [0, 15] (4 bits per digit).

Fig. 5. High-level architecture of the proposed decimal
PPR tree (h inputs, 1-digit column). This difference, T, is
computed in the sum correction block of every digit

column and added to the partial product sum (S, C) in the
decimal CSA.

FH—ewa e —— L
BT —— ) i o 1 [&]-
=D

the contribution of the column i to the sum correction term
T is
H; x 16 — H; x 10 = H, % 6. given by

Therefore, the sum correction is given by
24-1 -1

T=Y (Wix6x10)=6x ) Wx10.

i=0 i=0

Consequently, the sum correction block evaluates Wix®6.
This module is composed of a m-bit binary counter and a
X6 operator.

VI.FINAL CONVERSION TO BCD

The chosen structure is a 2d-digit multiple identical
prefix/ carry-select adder, the BCD Quaternary Shrub
adder. To style the bring prefix tree we examined the
indication appearance information from the PPRT tree.

VII. SYNTHESIS RESULTS

Finally, we existing a more in depth evaluation of the
quickest BCD 16x16-digit combinational multipliers in
regards to latency and place. The corresponding place

wait synthesis principles are proven in Fig.6.
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Fig. 10. Area-delay space for the fastest 16x16-digit
mults.
VIIl. CONCLUSION
In this document we have provided the criteria and
structure of a new BCD similar multiplier. The
developments of the suggested structure depend on the use
of certain repetitive BCD requirements, the XS-3 and
ODDS representations. Limited items can be produced
very quick in the XS-3 reflection using the SD radix-10
PPG scheme: beneficial multiplicand many (0X, 1X, 2X,
3X, 4X, 5X) are pre calculated in a carry-free way, while
adverse many are acquired by bit inversion of the
beneficial ones.
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