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ABSTRACT:Cloud storage system, consisting of a collection of storage servers, provides long-term storage services over the Internet. 

Storing data in a third party’s cloud system causes serious concern over data confidentiality. General encryption schemes protect data 

confidentiality, but also limit the functionality of the storage system because a few operations are supported over encrypted data. 

Constructing a secure storage system that supports multiple functions is challenging when the storage system is distributed and has no 

central authority. We propose a threshold proxy re-encryption scheme and integrate it with a decentralized erasure code such that a 

secure distributed storage system is formulated. The distributed storage system not only supports secure and robust data storage and 

retrieval, but also lets a user forward his data in the storage servers to another user without retrieving the data back. The main technical 

contribution is that the proxy re-encryption scheme supports encoding operations over encrypted messages as well as forwarding 

operations over encoded and encrypted messages. Our method fully integrates encrypting, encoding, and forwarding. We analyse and 

suggest suitable parameters for the number of copies of a message dispatched to storage servers and the number of storage servers 

queried by a key server. These parameters allow more flexible adjustment between the number of storage servers and robustness. 

 Keywords: Secure storage system ,Cryptography ,Decentralized erasure code, Proxy re-encryption. 

 

I. INTRODUCTION 

 

AS become available in recent years, many services are 

high-speed networks and ubiquitous Internet access provided 

on the Internet such that users can use them from anywhere 

at any time. For example, the email service is probably the 

most popular one. Cloud computing is a concept that treats 

the resources on the Internet as a unified entity, a cloud. 

Users just use services without being concerned about how 

computation is done and storage is managed. In this paper, 

we focus on designing a cloud storage system for robustness, 

confidentiality, and functionality. A cloud storage system is 

considered as a large scale distributed storage system that 

consists of many independent storage servers. 

Data robustness is a major requirement for storage systems. 

There have been many proposals of storing data over storage 

servers [1], [2], [3], [4], [5]. One way to provide data 

robustness is to replicate a message such that each storage 

server stores a copy of the message. It is very robust because 

the message can be retrieved as long as one storage server 

survives. Another way is to encode a message of k symbols 

into a codeword of n symbols by erasure coding. To store a 

message, each of its codeword symbols is stored in a 

different storage server. A storage server failure corresponds 

to an erasure error of the codeword symbol. As long as the 

number of failure servers is under the tolerance threshold of 

the erasure code, the message can be recovered from the 

codeword symbols stored in the available storage servers by 

the decoding process. This provides a trade off between the 

storage size and  

the tolerance threshold of failure servers. A decentralized 

erasure code is an erasure code that independently computes 

each codeword symbol for a message. Thus, the encoding 

process for a message can be split into n parallel tasks of 

generating codeword symbols. A decentralized erasure code 

is suitable for use in a distributed storage system. After the 

message symbols are sent to storage servers, each storage 

server independently computes a codeword symbol for the 

received message symbols and stores it. This finishes the 

encoding and storing process. The recovery process is the 

same.  

Storing data in a third party’s cloud system causes serious 

concern on data confidentiality. In order to provide strong 

confidentiality for messages in storage servers, a user can 

encrypt messages by a cryptographic method before applying 

an erasure code method to encode and store messages. When 

he wants to use a message, he needs to retrieve the codeword 

symbols from storage servers, decode them, and then decrypt 

them by using cryptographic keys. There are three problems 

in the above straightforward integration of encryption and 

encoding. First, the user has to do most computation and the 

communication traffic between the user and storage servers 

is high. Second, the user has to manage his cryptographic 

keys. If the user’s device of storing the keys is lost or 

compromised, the security is broken. Finally, besides data 

storing and retrieving, it is hard for storage servers to directly 

support other functions. For example, storage servers cannot 

directly forward a user’s messages to another one. The owner 

of messages has to retrieve, decode, decrypt and then forward 

them to another user. 

In this paper, we address the problem of forwarding data 

to another user by storage servers directly under the 

command of the data owner. We consider the system model 

that consists of distributed storage servers and key servers. 

Since storing cryptographic keys in a single device is risky, a 

user distributes his cryptographic key to key servers that shall 

perform cryptographic functions on behalf of the user. These 

key servers are highly protected by security mechanisms. To 
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well fit the distributed structure of systems, we require that 

servers independently perform all operations. With this 

consideration, we propose a new threshold proxy re 

encryption scheme and integrate it with a secure 

decentralized code to form a secure distributed storage 

system. The encryption scheme supports encoding operations 

over encrypted messages and forwarding operations over 

encrypted and encoded messages. The tight integration of 

encoding, encryption, and forwarding makes the storage 

system efficiently meet the requirements of data robustness, 

data confidentiality, and data forwarding. Accomplishing the 

integration with consideration of a distributed structure is 

challenging. Our system meets the requirements that storage 

servers independently perform encoding and re-encryption 

and key servers independently perform partial decryption. 

Moreover, we consider the system in a more general setting 

than previous works. This setting allows more flexible 

adjustment between the number of storage servers and 

robustness. 

Our contributions. Assume that there are n distributed 

storage servers and m key servers in the cloud storage 

system. A message is divided into k blocks and 

represented as a vector     of k symbols. Our contributions 

are as follows:  

1. We construct a secure cloud storage system that 

      supports the function of secure data forwarding by 

      using a threshold proxy re-encryption scheme.The 

      encryption scheme supports decentralized erasure 

      codes over encrypted messages and forwarding 

      operations over encrypted and encoded messages. 

      Our system is highly distributed where storage 

      servers independently encode and forward 

      messages and key   servers independently perform 

      partial decryption.                  

2.   In practical   systems, the number of storage servers is 

much more than k. The sacrifice  is  to slightly increase the 

total copies of an encrypted           message symbol sent to  

storage servers. 

 Nevertheless, the storage size in each storage server does not 

increase because each storage server stores an encoded result 

(a codeword symbol), which is a combination of encrypted 

message symbols. 

 

II. RELATED WORKS 

We briefly review distributed storage systems, proxy 

reencryption schemes, and integrity checking mechanisms. 

 

 

2.1 DISTRIBUTED STORAGE SYSTEMS  

 

At the early years, the Network-Attached Storage (NAS) [7] 

and the Network File System (NFS) [8] provide extra storage 

devices over the network such that a user can access the 

storage devices via network connection. Afterward, many 

improvements on scalability, robustness, efficiency, and 

security were proposed [1], [2], [9]. A decentralized 

architecture for storage systems offers good scalability, 

because a storage server can join or leave without control of 

a central authority. To provide robustness against server 

failures, a simple method is to make replicas of each message 

and store them in different servers. However, this method is 

expensive as z replicas result in z times of expansion. 

     One way to reduce the expansion rate is to use erasure 

codes to encode messages [10], [11], [12], [13], [5]. A 

message is encoded as a codeword, which is a vector of 

symbols, and each storage server stores a codeword symbol. 

A storage server failure is modeled as an erasure error of the 

stored codeword symbol. Random linear codes support 

distributed encoding, that is, each codeword symbol is 

independently computed. To store a message of k blocks, 

each storage server linearly combines the blocks with 

randomly chosen coefficients and stores the codeword 

symbol and coefficients. To retrieve the message, a user 

queries k storage servers for the stored codeword symbols 

and coefficients and solves the linear system. Dimakis et al. 

[13] considered the case that n=ak
C 

 for a fixed constant a. 

They showed that distributing each block of a message to v 

randomly chosen storage servers is enough to have a 

probability 1- k/p –o(1) of a successful data retrieval, where v 

= b ln k, b > 5a, and p is the order of the used group. The 

sparsity parameter v = b ln k is the number of storage servers 

which a block is sent to. The larger v is, the communication 

cost is higher and the successful retrieval probability is 

higher. The system has a light data confidentiality because an 

attacker can compromise k storage servers to get the message. 

 Lin and Tzeng [6] addressed robustness and 

confidentiality issues by presenting a secure decentralized 

erasure code for the networked storage system. In addition to 

storage servers, their system consists of key servers, which 

hold cryptographic key shares and work in a distributed way. 

In their system, stored messages are encrypted and then 

encoded. To retrieve a message, key servers query 

storageservers for the user. As long as the number of 

available key servers is over a threshold t, the message can 

be successfully retrieved with an overwhelming probability. 

One of their results shows that when there are n storage 

servers with n=ak√k, the parameter v is v = b ln k with b > 5a, 

and each key server queries 2 storage servers for each 

retrieval request, the probability of a successful retrieval is at 

least  

1- k/p –o(1) . 
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2.2 PROXY RE-ENCRYPTION SCHEMES 

 

Proxy re-encryption schemes are proposed by Mambo and 

Okamoto [14] and Blaze et al. [15]. In a proxy re-encryption 

scheme, a proxy server can transfer a ciphertext under a 

public key PKA to a new one under another public key PKB 

by using the re-encryption key RKA→B. The server does not 

know the plaintext during transformation. Ateniese et al. [16] 

proposed some proxy re-encryption schemes and applied 

them to the sharing function of secure storage systems. In 

their work, messages are first encrypted by the owner and 

then stored in a storage server. When a user wants to share 

his messages, he sends a re-encryption key to the storage 

server. The storage server re-encrypts the encrypted 

messages for the authorized user. Thus, their system has data 

confidentiality and supports the data forwarding function. 

Our work further integrates encryption, re-encryption, and 

encoding such that storage robustness is strengthened. 

 
        Fig. 1. A general system model of our work. 

 

Type-based proxy re-encryption schemes proposed by Tang 

[17] provide a better granularity on the granted right of a re-

encryption key. A user can decide which type of messages 

and with whom he wants to share in this kind of proxy 

reencryption schemes. Key-private proxy re-encryption 

schemes are proposed by Ateniese et al. [18]. In a key-

private proxy re-encryption scheme, given a re-encryption 

key, a proxy server cannot determine the identity of the 

recipient. This kind of proxy re-encryption schemes provides 

higher privacy guarantee against proxy servers. Although 

most proxy re-encryption schemes use pairing operations, 

there exist proxy re-encryption schemes without pairing [19]. 

  

                2.3 INTEGRITY CHECKING FUNCTIONALITY  

 

Another important functionality about cloud storage is the 

function of integrity checking. After a user stores data into 

the storage system, he no longer possesses the data at hand. 

The user may want to check whether the data are properly 

stored in storage servers. The concept of provable data 

possession [20], [21] and the notion of proof of storage [22], 

[23], [24] are proposed. Later, public auditability of stored 

data is addressed in [25]. Nevertheless all of them consider 

the messages in the cleartext form.  

 

III.SCENARIO 

  

We present the scenario of the storage system, the threat 

model that we consider for the confidentiality issue, and a 

discussion for a straightforward solution. 

 

3.1 SYSTEM MODEL 

 

As shown in Fig. 1, our system model consists of 

users, n storage servers SS1; SS2; . . . ; SSn, and m key 

servers KS1; KS2; . . . ; KSm. Storage servers provide 

storage services and key servers provide key management 

services. They work independently. Our distributed storage 

system consists of four phases: system setup, data storage, 

data forwarding, and data retrieval. These four phases are 

described as follows. In the system setup phase, the system 

manager chooses system parameters and publishes them. 

Each user A is assigned a public-secret key pair (PKA,SKA). 

User A distributes his secret key SKA to key servers such 

that each key server KSi holds a key share SKA,i, 1≤  i ≤ m. 

The key is shared with a threshold t. 

In the data storage phase, user A encrypts his 

message M and dispatches it to storage servers. A message M 

is decomposed into k blocks m1; m2; . . . ; mk and has an 

identifier ID. User A encrypts each block mi into a ciphertext 

Ci and sends it to v randomly chosen storage servers. Upon 

receiving ciphertexts from a user, each storage server linearly 

combines them with randomly chosen coefficients into a 

codeword symbol and stores it. Note that a storage server 

may receive less than k message blocks and we assume that 

all storage servers know the value k in advance. In the 

dataforwarding phase, user A forwards his encrypted 

message with an identifier ID stored in storage servers to 

user B such that B can decrypt the forwarded message by his 

secret key. To do so, A uses his secret key SKA and B’s 

public key PKB to compute a re-encryption key RK
ID

A→B and 

then sends RK
ID

 A→B to all storage servers. Each storage 

server uses the reencryption key to re encrypt its codeword 

symbol for later retrieval requests by B. The re-encrypted 

codeword symbol is the combination of ciphertexts under B’s 

public key. In order to distinguish re-encrypted codeword 

symbols from intact ones, we call them original codeword 

symbols and reencrypted codeword symbols, respectively. 

 In the data retrieval phase, user A requests to 

retrieve a message from storage servers. The message is 
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either stored by him or forwarded to him. User A sends a 

retrieval request to key servers. Upon receiving the retrieval 

request and executing a proper authentication process with 

user A, each key server KSi requests u randomly chosen 

storage servers to get codeword symbols and does partial 

decryption on the received codeword symbols by using the 

key share SKA,i. Finally, user A combines the partially 

decrypted codeword symbols to obtain the original message 

M. 

 System recovering. When a storage server fails, a 

new one is added. The new storage server queries k available 

storage servers, linearly combines the received codeword 

symbols as a new one and stores it. The system is then 

recovered.  

 

3.2 THREAT MODEL 

 

We consider data confidentiality for both data 

storage and data forwarding. In this threat model, an attacker 

wants to break data confidentiality of a target user. To do so, 

the attacker colludes with all storage servers, nontarget users, 

and up to (t – 1) key servers. The attacker analyzes stored 

messages in storage servers, the secret keys of nontarget 

users, and the shared keys stored in key servers. Note that the 

storage servers store all re-encryption keys provided by users. 

The attacker may try to generate a new re-encryption key 

from stored re-encryption keys. We formally model this 

attack by the standard chosen plaintext attack
1
 of the proxy 

re-encryption scheme in a threshold version, as shown in 

Fig. 2. 

 
Fig. 2. The security game for the chosen plaintext attack. 

 

The challenger C provides the system parameters. 

After the attacker A chooses a target user T , the challenger 

gives him (t-1) key shares of the secret key SKT of the target 

user T to model (t-1) compromised key servers. Then, the 

attacker can query secret keys of other users and all 

reencryption keys except those from T to other users. This 

models compromised nontarget users and storage servers. In 

the challenge phase, the attacker chooses two messages M0 

and M1 with the identifiers ID0 and ID1, respectively. The 

challenger throws a random coin b and encrypts the message 

Mb with T ’s public key PKT . After getting the ciphertext 

from the challenger, the attacker outputs a bit b0 for guessing 

b. In this game, the attacker wins if and only if b0 ¼ b. The 

advantage of the attacker is defined as |1/2-Pr[b’=b]|. 

 

A cloud storage system modeled in the above is 

secure if no probabilistic polynomial time attacker wins the 

game with a nonnegligible advantage. A secure cloud storage 

system implies that an unauthorized user or server cannot get 

the content of stored messages, and a storage server cannot 

generate re-encryption keys by himself. If a storage server 

can generate a re-encryption key from the target user to 

another user B, the attacker can win the security game by re-

encrypting the ciphertext to B and decrypting the reencrypted 

ciphertext using the secret key SKB. Therefore, this model 

addresses the security of data storage and data forwarding. 

 

3.3 A STRAIGHT FORWARD SOLUTION  

A straightforward solution to supporting the data 

forwarding function in a distributed storage system is as 

follows:when the owner A wants to forward a message to 

user B, he downloads the encrypted message and decrypts it 

by using his secret key. He then encrypts the message by 

using B’s public key and uploads the new ciphertext. When 

B wants to retrieve the forwarded message from A, he 

downloads the ciphertext and decrypts it by his secret key. 

The whole data forwarding process needs three 

communication rounds for A’s downloading and uploading 

and B’s downloading. The communication cost is linear in 

the length of the forwarded message. The computation cost is 

the decryption and encryption for the owner A, and the 

decryption for user B. Proxy re-encryption schemes can 

significantly decrease communication and computation cost 

of the owner. In a proxy re-encryption scheme,the owner 

sends a re-encryption key to storage servers such that storage 

servers perform the re-encryption operation for him. Thus, 

the communication cost of the owner is independent of the 

length of forwarded message and the computation cost of re-

encryption is taken care of by storage servers. Proxy re-

encryption schemes significantly reduce the overhead of the 

data forwarding function in a secure storage system.  

 

IV.CONSTRUCTION OF SECURE CLOUD 

    STORAGE SYSTEMS 
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Before presenting our storage system, we briefly 

introduce the algebraic setting, the hardness assumption, an 

erasure code over exponents, and our approach. 

 

BILINEAR MAP:Let G1 and G2 be cyclic multiplicative 

groups
2
 with a prime order p and q ϵG1 be a generator. A 

map ẽ:G X G1→ G2  is a bilinear map if it is efficiently 

computable and has the properties of bilinearity and 

nondegeneracy: for any x,y ϵ Z
*
p, ẽ (g

x 
,g

y
 )= ẽ (g

 
,g )

xy  
and ẽ 

(g
 
,g )is not the identity element in  G2. Let Gen(1

λ
 )be an 

algorithm generating,(g ẽ ,G1,G2,p), where  is the length of p. 

Let x ϵ R X denote that x is randomly chosen from the set X. 

 

    Decisional bilinear Diffie-Hellman assumption:This 

assumption is that it is computationally infeasible to 

distinguish the distributions (g, g
x
, g

y
, g

z
, ẽ (g

 
,g )

xyz
) and (g, 

g
x
, g

y
, g

z
, ẽ (g

 
,g )

r
, where x, y, z ϵ R Z

*
p . Formally, for any 

probabilistic polynomial time algorithm A, the following is 

negligible (in λ). 

 

|Pr[A(g,g
x
, g

y
g

z
,Qz)=b:x,y,z,r,ϵR Z

*
p, 

     Q0= ẽ (g
 
,g )

xyz
;
  
Q1= ẽ (g

 
,g )

r
;b ϵ R{0,1}]-1/2|. 

 

Erasure coding over exponents: We consider that the 

message domain is the cyclic multiplicative group G2 

described above. An encoder generates a generator 

matrixG=[ gi,j] for 1≤  i ≤ k, 1 ≤ j ≤ n as follows: for each 

row, the encoder randomly selects an entry and randomly 

sets a value from Z
*
p to the entry. The encoder repeats this 

step v times with replacement for each row. An entry of a 

row can be selected multiple times but only set to one value. 

The values of the rest entries are set to 0. Let the message be 

(m1,m2, . . .,mk) ϵ G
K
 2. The encoding process is to generate 

(w1,w2, . . .,wn) ϵ G G
n2

 , where mg1 ,mg 2 mg k for1  to   n. 

The first step of the decoding process is tocompute the 

inverse of a k submatrix K of G. The final step of the 

decoding process is to compute An example is shown in Fig. 

3. User A stores two messages m1 and m2 into four storage 

servers. When the storage servers SS1 and SS3 are available 

and the k  k sub matrix K is invertible, user A can decode m1 

and m2 from the codeword symbols w1;w3 and the 

coefficients (g1,g2), which are stored in the storage servers 

SS1 and SS3.  

Our approach. We use a threshold proxy re-encryption 

scheme with multiplicative homomorphic property. An 

encryption scheme is multiplicative homomorphic if it 

supports a group operation  on encrypted plaintexts 

without decryptionD(SK, E(PK, m1)  E(PK, m2)) = m1.  m2, 

where E is the encryption function, D is the decryption 

function, and (PK,SK) is a pair of public key and secret 

key. Given two coefficients g1 and g2, two message symbols 

m1 and m2 can be encoded to a codeword symbol mg 11mg 

22in the encrypted form C = E(PK, m1)
g1

  E(PK, m2)
g2

= 

E(PK, mg1 , mg 2). 

 

Thus, a multiplicative homomorphic encryption scheme 

supports the encoding operation over encrypted messages. 

We then convert a proxy re-encryption scheme with 

multiplicative homomorphic property into a threshold 

version. A secret key is shared to key servers with a 

threshold value t via the Shamir secret sharing scheme [26], 

where t  k. In our system, to decrypt for a set of k message 

symbols, each key server independently queries 2 storage 

servers and partially decrypts two encrypted codeword 

symbols. As long as t key servers are available, k codeword 

symbols are obtained from the partially decrypted  cipher 

texts 

 

4.1 A Secure Cloud Storage System with 

                 Secure Forwarding 

 

 As described in Section 3.1, there are four phases of our 

storage system. 

System setup: The algorithm SetUp(1
r
 )generates the 

system parameters μ . A user uses KeyGen(μ) to generate his 

public and secret key pair and ShareKeyGen(.) to share his 

secret key to a set of m key servers with a threshold t, where 

k≤  t ≤ m. The user locally stores the third component of his 

secret key. 

 

Data storage:When user A wants to store a message of k 

blocks m1, m2, . . .  mk with the identifier ID, he computes 

the identity token  y= h and performs the encryption 

algorithm Enc(.) on  and k blocks to get k original ciphertexts 

C1, C2, . . . , Ck. An original ciphertext is indicated by a 

leading bit b =0. User A sends each ciphertext Ci to v 

randomly chosen storage servers. A storage server receives a 

set of original ciphertexts with the same identity token  from 

A. When a ciphertext Ci is not received, the storage server 

inserts Ci = (0,1,t, 1) to the set. The special format of (0,1,t, 1)  

is a mark for the absence of Ci. The storage server performs 

Encode(.) on the set of k ciphertexts and stores the encoded 

result (codeword symbol). 

 

4.2 ANALYSIS 

We analyze storage and computation complexities, 

correctness, and security of our cloud storage system in this 

section. Let the bit-length of an element in the group G1 be 

l1 and G2 be l2. Let coefficients gi,j be randomly chosen 

from {0, 1}
l3

. 

Computation cost: We measure the computation cost by the 

number of pairing operations, modular exponentiations in G1 

and G2, modular multiplications in G1 and G2, and 

arithmetic operations over GF(p). These operations are 

denoted as Pairing, Exp1, Exp2, Mult1, Mult2, and Fp, 

respectively. The cost is summarized in Table 1. Computing 
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an Fp takes much less time than computing a Mult1 or a 

Mult2. The time of computing an Exp1 is 1.5[log p] times as 

much as the time of computing a Mult1, on average, (by 

using the square-and multiply algorithm). Similarly, the time 

of computing a Exp2 is 1.5[log p] times as much as the time 

of computing a Mult2, on average. 

 

 
 

Correctness: There are two cases for correctness. The owner 

A correctly retrieves his message and user B correctly 

retrieves a message forwarded to him. The correctness of 

encryption and decryption for A can be seen in (1). The 

correctness of re-encryption and decryption for B can be seen 

in (2). As long as at least k storage servers are available, a 

user can retrieve data with an overwhelming probability. 

Thus, our storage system tolerates n  k server failures. The 

probability of a successful retrieval. A successful retrieval is 

an event that a user successfully retrieves all k blocks of a 

message no matter whether the message is owned by him or 

forwarded to him. The randomness comes from the random 

selection of storage servers in the data storage phase, the 

random coefficients chosen by storage servers, and the 

random selection of key servers in the data retrieval phase. 

The probability of a uccessful retrieval depends on (n, k, u, v) 

and all randomness. 

       The methodology of analysis is similar to that in [13] 

and [6]. However, we consider a different system model from 

the one in [13] and a more flexible parameter setting for n = 

akc than the settings in [13] and [6]. The difference between 

our system model and the one in [13] is that our system 

model has key servers. In [13], a single user queries k distinct 

storage servers to retrieve the data. On the other hand, each 

key server in our system independently queries u storage 

servers. The use of distributed key servers increases the level 

of key protection but makes the analysis harder. 

 

Theorem 1. Assume that there are k blocks of a message, n 

storage servers, and m key servers, where n =akc, m≥  t ≥ k, 

c≥  1.5 and a is a constant with a >√2.   For v =bk
c-1 

ln k and 

u = 2 with b > 5a, the probability of a successful retrieval is 

at least 1-  k/p- o(1). 

 

Security. The data confidentiality of our cloud storage system 

is guaranteed even if all storage servers, nontarget users, and 

up to (t- 1) key servers are compromised by the attacker. 

Recall the security game illustrated in Fig. 2. The proof for 

Theorem 2 is provided in Appendix B, available in the online 

supplementary material. 

Theorem 2. Our cloud storage system described in Section 

4.1 is secure under the threat model in Section 3.2 if the 

decisional 

bilinear Diffie-Hellman assumption holds. 

 

V. DISCUSSION AND CONCLUSION 

 

    In this paper, we consider a cloud storage system consists 

of storage servers and key servers. We integrate a newly 

proposed threshold proxy re-encryption scheme and erasure 

codes over exponents. The threshold proxy reencryption 

scheme supports encoding, forwarding, and partial 

decryption operations in a distributed way. To decrypt a 

message of k blocks that are encrypted and encoded to n 

codeword symbols, each key server only has to partially 

decrypt two codeword symbols in our system. By using the 

threshold proxy re-encryption scheme, we present a secure 

cloud storage system that provides secure data storage and 

secure data forwarding functionality in a decentralized 

structure. Moreover, each storage server independently 

performs encoding and re-encryption and each key server 

independently performs partial decryption. 

 Our storage system and some newly proposed content 

addressable file systems and storage system [27], [28], [29] 

are highly compatible. Our storage servers act as storage 

nodes in a content addressable storage system for storing 

content addressable blocks. Our key servers act as access 

nodes for providing a front-end layer such as a traditional file 

system interface. Further study on detailed cooperation is 

required. 
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