
International Conference on Advances In Computing ,Electrical and Communication Engineering(ICACECE-2017)

International Journal of Advanced Scientific Technologies, Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.3,Special Issue.1,May.2017

www.ijastems.org Page 101

Proxy Re-encryption Scheme and Decentralized

Erasure Code Based Cloud Storage
1
D.Anandam,Asst.Professor,Dept of CSE,PACE Institute of Technology & Sciences,Ongole,A.P,India.

2
Sreenivasulu Bolla,Asst.Professor,Dept of CSE,PACE Institute of Technology & Sciences,Ongole,A.P,India.

ABSTRACT:Cloud storage system, consisting of a collection of storage servers, provides long-term storage services over the Internet.

Storing data in a third party’s cloud system causes serious concern over data confidentiality. General encryption schemes protect data

confidentiality, but also limit the functionality of the storage system because a few operations are supported over encrypted data.

Constructing a secure storage system that supports multiple functions is challenging when the storage system is distributed and has no

central authority. We propose a threshold proxy re-encryption scheme and integrate it with a decentralized erasure code such that a

secure distributed storage system is formulated. The distributed storage system not only supports secure and robust data storage and

retrieval, but also lets a user forward his data in the storage servers to another user without retrieving the data back. The main technical

contribution is that the proxy re-encryption scheme supports encoding operations over encrypted messages as well as forwarding

operations over encoded and encrypted messages. Our method fully integrates encrypting, encoding, and forwarding. We analyse and

suggest suitable parameters for the number of copies of a message dispatched to storage servers and the number of storage servers

queried by a key server. These parameters allow more flexible adjustment between the number of storage servers and robustness.

 Keywords: Secure storage system ,Cryptography ,Decentralized erasure code, Proxy re-encryption.

I. INTRODUCTION

AS become available in recent years, many services are

high-speed networks and ubiquitous Internet access provided

on the Internet such that users can use them from anywhere

at any time. For example, the email service is probably the

most popular one. Cloud computing is a concept that treats

the resources on the Internet as a unified entity, a cloud.

Users just use services without being concerned about how

computation is done and storage is managed. In this paper,

we focus on designing a cloud storage system for robustness,

confidentiality, and functionality. A cloud storage system is

considered as a large scale distributed storage system that

consists of many independent storage servers.

Data robustness is a major requirement for storage systems.

There have been many proposals of storing data over storage

servers [1], [2], [3], [4], [5]. One way to provide data

robustness is to replicate a message such that each storage

server stores a copy of the message. It is very robust because

the message can be retrieved as long as one storage server

survives. Another way is to encode a message of k symbols

into a codeword of n symbols by erasure coding. To store a

message, each of its codeword symbols is stored in a

different storage server. A storage server failure corresponds

to an erasure error of the codeword symbol. As long as the

number of failure servers is under the tolerance threshold of

the erasure code, the message can be recovered from the

codeword symbols stored in the available storage servers by

the decoding process. This provides a trade off between the

storage size and

the tolerance threshold of failure servers. A decentralized

erasure code is an erasure code that independently computes

each codeword symbol for a message. Thus, the encoding

process for a message can be split into n parallel tasks of

generating codeword symbols. A decentralized erasure code

is suitable for use in a distributed storage system. After the

message symbols are sent to storage servers, each storage

server independently computes a codeword symbol for the

received message symbols and stores it. This finishes the

encoding and storing process. The recovery process is the

same.

Storing data in a third party’s cloud system causes serious

concern on data confidentiality. In order to provide strong

confidentiality for messages in storage servers, a user can

encrypt messages by a cryptographic method before applying

an erasure code method to encode and store messages. When

he wants to use a message, he needs to retrieve the codeword

symbols from storage servers, decode them, and then decrypt

them by using cryptographic keys. There are three problems

in the above straightforward integration of encryption and

encoding. First, the user has to do most computation and the

communication traffic between the user and storage servers

is high. Second, the user has to manage his cryptographic

keys. If the user’s device of storing the keys is lost or

compromised, the security is broken. Finally, besides data

storing and retrieving, it is hard for storage servers to directly

support other functions. For example, storage servers cannot

directly forward a user’s messages to another one. The owner

of messages has to retrieve, decode, decrypt and then forward

them to another user.

In this paper, we address the problem of forwarding data

to another user by storage servers directly under the

command of the data owner. We consider the system model

that consists of distributed storage servers and key servers.

Since storing cryptographic keys in a single device is risky, a

user distributes his cryptographic key to key servers that shall

perform cryptographic functions on behalf of the user. These

key servers are highly protected by security mechanisms. To

International Conference on Advances In Computing ,Electrical and Communication Engineering(ICACECE-2017)

International Journal of Advanced Scientific Technologies, Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.3,Special Issue.1,May.2017

www.ijastems.org Page 102

well fit the distributed structure of systems, we require that

servers independently perform all operations. With this

consideration, we propose a new threshold proxy re

encryption scheme and integrate it with a secure

decentralized code to form a secure distributed storage

system. The encryption scheme supports encoding operations

over encrypted messages and forwarding operations over

encrypted and encoded messages. The tight integration of

encoding, encryption, and forwarding makes the storage

system efficiently meet the requirements of data robustness,

data confidentiality, and data forwarding. Accomplishing the

integration with consideration of a distributed structure is

challenging. Our system meets the requirements that storage

servers independently perform encoding and re-encryption

and key servers independently perform partial decryption.

Moreover, we consider the system in a more general setting

than previous works. This setting allows more flexible

adjustment between the number of storage servers and

robustness.

Our contributions. Assume that there are n distributed

storage servers and m key servers in the cloud storage

system. A message is divided into k blocks and

represented as a vector of k symbols. Our contributions

are as follows:

1. We construct a secure cloud storage system that

 supports the function of secure data forwarding by

 using a threshold proxy re-encryption scheme.The

 encryption scheme supports decentralized erasure

 codes over encrypted messages and forwarding

 operations over encrypted and encoded messages.

 Our system is highly distributed where storage

 servers independently encode and forward

 messages and key servers independently perform

 partial decryption.

2. In practical systems, the number of storage servers is

much more than k. The sacrifice is to slightly increase the

total copies of an encrypted message symbol sent to

storage servers.

 Nevertheless, the storage size in each storage server does not

increase because each storage server stores an encoded result

(a codeword symbol), which is a combination of encrypted

message symbols.

II. RELATED WORKS

We briefly review distributed storage systems, proxy

reencryption schemes, and integrity checking mechanisms.

2.1 DISTRIBUTED STORAGE SYSTEMS

At the early years, the Network-Attached Storage (NAS) [7]

and the Network File System (NFS) [8] provide extra storage

devices over the network such that a user can access the

storage devices via network connection. Afterward, many

improvements on scalability, robustness, efficiency, and

security were proposed [1], [2], [9]. A decentralized

architecture for storage systems offers good scalability,

because a storage server can join or leave without control of

a central authority. To provide robustness against server

failures, a simple method is to make replicas of each message

and store them in different servers. However, this method is

expensive as z replicas result in z times of expansion.

 One way to reduce the expansion rate is to use erasure

codes to encode messages [10], [11], [12], [13], [5]. A

message is encoded as a codeword, which is a vector of

symbols, and each storage server stores a codeword symbol.

A storage server failure is modeled as an erasure error of the

stored codeword symbol. Random linear codes support

distributed encoding, that is, each codeword symbol is

independently computed. To store a message of k blocks,

each storage server linearly combines the blocks with

randomly chosen coefficients and stores the codeword

symbol and coefficients. To retrieve the message, a user

queries k storage servers for the stored codeword symbols

and coefficients and solves the linear system. Dimakis et al.

[13] considered the case that n=ak
C

 for a fixed constant a.

They showed that distributing each block of a message to v

randomly chosen storage servers is enough to have a

probability 1- k/p –o(1) of a successful data retrieval, where v

= b ln k, b > 5a, and p is the order of the used group. The

sparsity parameter v = b ln k is the number of storage servers

which a block is sent to. The larger v is, the communication

cost is higher and the successful retrieval probability is

higher. The system has a light data confidentiality because an

attacker can compromise k storage servers to get the message.

 Lin and Tzeng [6] addressed robustness and

confidentiality issues by presenting a secure decentralized

erasure code for the networked storage system. In addition to

storage servers, their system consists of key servers, which

hold cryptographic key shares and work in a distributed way.

In their system, stored messages are encrypted and then

encoded. To retrieve a message, key servers query

storageservers for the user. As long as the number of

available key servers is over a threshold t, the message can

be successfully retrieved with an overwhelming probability.

One of their results shows that when there are n storage

servers with n=ak√k, the parameter v is v = b ln k with b > 5a,

and each key server queries 2 storage servers for each

retrieval request, the probability of a successful retrieval is at

least

1- k/p –o(1) .

International Conference on Advances In Computing ,Electrical and Communication Engineering(ICACECE-2017)

International Journal of Advanced Scientific Technologies, Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.3,Special Issue.1,May.2017

www.ijastems.org Page 103

2.2 PROXY RE-ENCRYPTION SCHEMES

Proxy re-encryption schemes are proposed by Mambo and

Okamoto [14] and Blaze et al. [15]. In a proxy re-encryption

scheme, a proxy server can transfer a ciphertext under a

public key PKA to a new one under another public key PKB

by using the re-encryption key RKA→B. The server does not

know the plaintext during transformation. Ateniese et al. [16]

proposed some proxy re-encryption schemes and applied

them to the sharing function of secure storage systems. In

their work, messages are first encrypted by the owner and

then stored in a storage server. When a user wants to share

his messages, he sends a re-encryption key to the storage

server. The storage server re-encrypts the encrypted

messages for the authorized user. Thus, their system has data

confidentiality and supports the data forwarding function.

Our work further integrates encryption, re-encryption, and

encoding such that storage robustness is strengthened.

 Fig. 1. A general system model of our work.

Type-based proxy re-encryption schemes proposed by Tang

[17] provide a better granularity on the granted right of a re-

encryption key. A user can decide which type of messages

and with whom he wants to share in this kind of proxy

reencryption schemes. Key-private proxy re-encryption

schemes are proposed by Ateniese et al. [18]. In a key-

private proxy re-encryption scheme, given a re-encryption

key, a proxy server cannot determine the identity of the

recipient. This kind of proxy re-encryption schemes provides

higher privacy guarantee against proxy servers. Although

most proxy re-encryption schemes use pairing operations,

there exist proxy re-encryption schemes without pairing [19].

 2.3 INTEGRITY CHECKING FUNCTIONALITY

Another important functionality about cloud storage is the

function of integrity checking. After a user stores data into

the storage system, he no longer possesses the data at hand.

The user may want to check whether the data are properly

stored in storage servers. The concept of provable data

possession [20], [21] and the notion of proof of storage [22],

[23], [24] are proposed. Later, public auditability of stored

data is addressed in [25]. Nevertheless all of them consider

the messages in the cleartext form.

III.SCENARIO

We present the scenario of the storage system, the threat

model that we consider for the confidentiality issue, and a

discussion for a straightforward solution.

3.1 SYSTEM MODEL

As shown in Fig. 1, our system model consists of

users, n storage servers SS1; SS2; . . . ; SSn, and m key

servers KS1; KS2; . . . ; KSm. Storage servers provide

storage services and key servers provide key management

services. They work independently. Our distributed storage

system consists of four phases: system setup, data storage,

data forwarding, and data retrieval. These four phases are

described as follows. In the system setup phase, the system

manager chooses system parameters and publishes them.

Each user A is assigned a public-secret key pair (PKA,SKA).

User A distributes his secret key SKA to key servers such

that each key server KSi holds a key share SKA,i, 1≤ i ≤ m.

The key is shared with a threshold t.

In the data storage phase, user A encrypts his

message M and dispatches it to storage servers. A message M

is decomposed into k blocks m1; m2; . . . ; mk and has an

identifier ID. User A encrypts each block mi into a ciphertext

Ci and sends it to v randomly chosen storage servers. Upon

receiving ciphertexts from a user, each storage server linearly

combines them with randomly chosen coefficients into a

codeword symbol and stores it. Note that a storage server

may receive less than k message blocks and we assume that

all storage servers know the value k in advance. In the

dataforwarding phase, user A forwards his encrypted

message with an identifier ID stored in storage servers to

user B such that B can decrypt the forwarded message by his

secret key. To do so, A uses his secret key SKA and B’s

public key PKB to compute a re-encryption key RK
ID

A→B and

then sends RK
ID

 A→B to all storage servers. Each storage

server uses the reencryption key to re encrypt its codeword

symbol for later retrieval requests by B. The re-encrypted

codeword symbol is the combination of ciphertexts under B’s

public key. In order to distinguish re-encrypted codeword

symbols from intact ones, we call them original codeword

symbols and reencrypted codeword symbols, respectively.

 In the data retrieval phase, user A requests to

retrieve a message from storage servers. The message is

International Conference on Advances In Computing ,Electrical and Communication Engineering(ICACECE-2017)

International Journal of Advanced Scientific Technologies, Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.3,Special Issue.1,May.2017

www.ijastems.org Page 104

either stored by him or forwarded to him. User A sends a

retrieval request to key servers. Upon receiving the retrieval

request and executing a proper authentication process with

user A, each key server KSi requests u randomly chosen

storage servers to get codeword symbols and does partial

decryption on the received codeword symbols by using the

key share SKA,i. Finally, user A combines the partially

decrypted codeword symbols to obtain the original message

M.

 System recovering. When a storage server fails, a

new one is added. The new storage server queries k available

storage servers, linearly combines the received codeword

symbols as a new one and stores it. The system is then

recovered.

3.2 THREAT MODEL

We consider data confidentiality for both data

storage and data forwarding. In this threat model, an attacker

wants to break data confidentiality of a target user. To do so,

the attacker colludes with all storage servers, nontarget users,

and up to (t – 1) key servers. The attacker analyzes stored

messages in storage servers, the secret keys of nontarget

users, and the shared keys stored in key servers. Note that the

storage servers store all re-encryption keys provided by users.

The attacker may try to generate a new re-encryption key

from stored re-encryption keys. We formally model this

attack by the standard chosen plaintext attack
1
 of the proxy

re-encryption scheme in a threshold version, as shown in

Fig. 2.

Fig. 2. The security game for the chosen plaintext attack.

The challenger C provides the system parameters.

After the attacker A chooses a target user T , the challenger

gives him (t-1) key shares of the secret key SKT of the target

user T to model (t-1) compromised key servers. Then, the

attacker can query secret keys of other users and all

reencryption keys except those from T to other users. This

models compromised nontarget users and storage servers. In

the challenge phase, the attacker chooses two messages M0

and M1 with the identifiers ID0 and ID1, respectively. The

challenger throws a random coin b and encrypts the message

Mb with T ’s public key PKT . After getting the ciphertext

from the challenger, the attacker outputs a bit b0 for guessing

b. In this game, the attacker wins if and only if b0 ¼ b. The

advantage of the attacker is defined as |1/2-Pr[b’=b]|.

A cloud storage system modeled in the above is

secure if no probabilistic polynomial time attacker wins the

game with a nonnegligible advantage. A secure cloud storage

system implies that an unauthorized user or server cannot get

the content of stored messages, and a storage server cannot

generate re-encryption keys by himself. If a storage server

can generate a re-encryption key from the target user to

another user B, the attacker can win the security game by re-

encrypting the ciphertext to B and decrypting the reencrypted

ciphertext using the secret key SKB. Therefore, this model

addresses the security of data storage and data forwarding.

3.3 A STRAIGHT FORWARD SOLUTION

A straightforward solution to supporting the data

forwarding function in a distributed storage system is as

follows:when the owner A wants to forward a message to

user B, he downloads the encrypted message and decrypts it

by using his secret key. He then encrypts the message by

using B’s public key and uploads the new ciphertext. When

B wants to retrieve the forwarded message from A, he

downloads the ciphertext and decrypts it by his secret key.

The whole data forwarding process needs three

communication rounds for A’s downloading and uploading

and B’s downloading. The communication cost is linear in

the length of the forwarded message. The computation cost is

the decryption and encryption for the owner A, and the

decryption for user B. Proxy re-encryption schemes can

significantly decrease communication and computation cost

of the owner. In a proxy re-encryption scheme,the owner

sends a re-encryption key to storage servers such that storage

servers perform the re-encryption operation for him. Thus,

the communication cost of the owner is independent of the

length of forwarded message and the computation cost of re-

encryption is taken care of by storage servers. Proxy re-

encryption schemes significantly reduce the overhead of the

data forwarding function in a secure storage system.

IV.CONSTRUCTION OF SECURE CLOUD

 STORAGE SYSTEMS

International Conference on Advances In Computing ,Electrical and Communication Engineering(ICACECE-2017)

International Journal of Advanced Scientific Technologies, Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.3,Special Issue.1,May.2017

www.ijastems.org Page 105

Before presenting our storage system, we briefly

introduce the algebraic setting, the hardness assumption, an

erasure code over exponents, and our approach.

BILINEAR MAP:Let G1 and G2 be cyclic multiplicative

groups
2
 with a prime order p and q ϵG1 be a generator. A

map ẽ:G X G1→ G2 is a bilinear map if it is efficiently

computable and has the properties of bilinearity and

nondegeneracy: for any x,y ϵ Z
*
p, ẽ (g

x
,g

y
)= ẽ (g

,g)

xy
and ẽ

(g

,g)is not the identity element in G2. Let Gen(1

λ
)be an

algorithm generating,(g ẽ ,G1,G2,p), where is the length of p.

Let x ϵ R X denote that x is randomly chosen from the set X.

 Decisional bilinear Diffie-Hellman assumption:This

assumption is that it is computationally infeasible to

distinguish the distributions (g, g
x
, g

y
, g

z
, ẽ (g

,g)

xyz
) and (g,

g
x
, g

y
, g

z
, ẽ (g

,g)

r
, where x, y, z ϵ R Z

*
p . Formally, for any

probabilistic polynomial time algorithm A, the following is

negligible (in λ).

|Pr[A(g,g
x
, g

y
g

z
,Qz)=b:x,y,z,r,ϵR Z

*
p,

 Q0= ẽ (g

,g)

xyz
;

Q1= ẽ (g

,g)

r
;b ϵ R{0,1}]-1/2|.

Erasure coding over exponents: We consider that the

message domain is the cyclic multiplicative group G2

described above. An encoder generates a generator

matrixG=[gi,j] for 1≤ i ≤ k, 1 ≤ j ≤ n as follows: for each

row, the encoder randomly selects an entry and randomly

sets a value from Z
*
p to the entry. The encoder repeats this

step v times with replacement for each row. An entry of a

row can be selected multiple times but only set to one value.

The values of the rest entries are set to 0. Let the message be

(m1,m2, . . .,mk) ϵ G
K
 2. The encoding process is to generate

(w1,w2, . . .,wn) ϵ G G
n2

 , where mg1 ,mg 2 mg k for1 to n.

The first step of the decoding process is tocompute the

inverse of a k submatrix K of G. The final step of the

decoding process is to compute An example is shown in Fig.

3. User A stores two messages m1 and m2 into four storage

servers. When the storage servers SS1 and SS3 are available

and the k k sub matrix K is invertible, user A can decode m1

and m2 from the codeword symbols w1;w3 and the

coefficients (g1,g2), which are stored in the storage servers

SS1 and SS3.

Our approach. We use a threshold proxy re-encryption

scheme with multiplicative homomorphic property. An

encryption scheme is multiplicative homomorphic if it

supports a group operation on encrypted plaintexts

without decryptionD(SK, E(PK, m1) E(PK, m2)) = m1. m2,

where E is the encryption function, D is the decryption

function, and (PK,SK) is a pair of public key and secret

key. Given two coefficients g1 and g2, two message symbols

m1 and m2 can be encoded to a codeword symbol mg 11mg

22in the encrypted form C = E(PK, m1)
g1

 E(PK, m2)
g2

=

E(PK, mg1 , mg 2).

Thus, a multiplicative homomorphic encryption scheme

supports the encoding operation over encrypted messages.

We then convert a proxy re-encryption scheme with

multiplicative homomorphic property into a threshold

version. A secret key is shared to key servers with a

threshold value t via the Shamir secret sharing scheme [26],

where t k. In our system, to decrypt for a set of k message

symbols, each key server independently queries 2 storage

servers and partially decrypts two encrypted codeword

symbols. As long as t key servers are available, k codeword

symbols are obtained from the partially decrypted cipher

texts

4.1 A Secure Cloud Storage System with

 Secure Forwarding

 As described in Section 3.1, there are four phases of our

storage system.

System setup: The algorithm SetUp(1
r
)generates the

system parameters μ . A user uses KeyGen(μ) to generate his

public and secret key pair and ShareKeyGen(.) to share his

secret key to a set of m key servers with a threshold t, where

k≤ t ≤ m. The user locally stores the third component of his

secret key.

Data storage:When user A wants to store a message of k

blocks m1, m2, . . . mk with the identifier ID, he computes

the identity token y= h and performs the encryption

algorithm Enc(.) on and k blocks to get k original ciphertexts

C1, C2, . . . , Ck. An original ciphertext is indicated by a

leading bit b =0. User A sends each ciphertext Ci to v

randomly chosen storage servers. A storage server receives a

set of original ciphertexts with the same identity token from

A. When a ciphertext Ci is not received, the storage server

inserts Ci = (0,1,t, 1) to the set. The special format of (0,1,t, 1)

is a mark for the absence of Ci. The storage server performs

Encode(.) on the set of k ciphertexts and stores the encoded

result (codeword symbol).

4.2 ANALYSIS

We analyze storage and computation complexities,

correctness, and security of our cloud storage system in this

section. Let the bit-length of an element in the group G1 be

l1 and G2 be l2. Let coefficients gi,j be randomly chosen

from {0, 1}
l3

.

Computation cost: We measure the computation cost by the

number of pairing operations, modular exponentiations in G1

and G2, modular multiplications in G1 and G2, and

arithmetic operations over GF(p). These operations are

denoted as Pairing, Exp1, Exp2, Mult1, Mult2, and Fp,

respectively. The cost is summarized in Table 1. Computing

International Conference on Advances In Computing ,Electrical and Communication Engineering(ICACECE-2017)

International Journal of Advanced Scientific Technologies, Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.3,Special Issue.1,May.2017

www.ijastems.org Page 106

an Fp takes much less time than computing a Mult1 or a

Mult2. The time of computing an Exp1 is 1.5[log p] times as

much as the time of computing a Mult1, on average, (by

using the square-and multiply algorithm). Similarly, the time

of computing a Exp2 is 1.5[log p] times as much as the time

of computing a Mult2, on average.

Correctness: There are two cases for correctness. The owner

A correctly retrieves his message and user B correctly

retrieves a message forwarded to him. The correctness of

encryption and decryption for A can be seen in (1). The

correctness of re-encryption and decryption for B can be seen

in (2). As long as at least k storage servers are available, a

user can retrieve data with an overwhelming probability.

Thus, our storage system tolerates n k server failures. The

probability of a successful retrieval. A successful retrieval is

an event that a user successfully retrieves all k blocks of a

message no matter whether the message is owned by him or

forwarded to him. The randomness comes from the random

selection of storage servers in the data storage phase, the

random coefficients chosen by storage servers, and the

random selection of key servers in the data retrieval phase.

The probability of a uccessful retrieval depends on (n, k, u, v)

and all randomness.

 The methodology of analysis is similar to that in [13]

and [6]. However, we consider a different system model from

the one in [13] and a more flexible parameter setting for n =

akc than the settings in [13] and [6]. The difference between

our system model and the one in [13] is that our system

model has key servers. In [13], a single user queries k distinct

storage servers to retrieve the data. On the other hand, each

key server in our system independently queries u storage

servers. The use of distributed key servers increases the level

of key protection but makes the analysis harder.

Theorem 1. Assume that there are k blocks of a message, n

storage servers, and m key servers, where n =akc, m≥ t ≥ k,

c≥ 1.5 and a is a constant with a >√2. For v =bk
c-1

ln k and

u = 2 with b > 5a, the probability of a successful retrieval is

at least 1- k/p- o(1).

Security. The data confidentiality of our cloud storage system

is guaranteed even if all storage servers, nontarget users, and

up to (t- 1) key servers are compromised by the attacker.

Recall the security game illustrated in Fig. 2. The proof for

Theorem 2 is provided in Appendix B, available in the online

supplementary material.

Theorem 2. Our cloud storage system described in Section

4.1 is secure under the threat model in Section 3.2 if the

decisional

bilinear Diffie-Hellman assumption holds.

V. DISCUSSION AND CONCLUSION

 In this paper, we consider a cloud storage system consists

of storage servers and key servers. We integrate a newly

proposed threshold proxy re-encryption scheme and erasure

codes over exponents. The threshold proxy reencryption

scheme supports encoding, forwarding, and partial

decryption operations in a distributed way. To decrypt a

message of k blocks that are encrypted and encoded to n

codeword symbols, each key server only has to partially

decrypt two codeword symbols in our system. By using the

threshold proxy re-encryption scheme, we present a secure

cloud storage system that provides secure data storage and

secure data forwarding functionality in a decentralized

structure. Moreover, each storage server independently

performs encoding and re-encryption and each key server

independently performs partial decryption.

 Our storage system and some newly proposed content

addressable file systems and storage system [27], [28], [29]

are highly compatible. Our storage servers act as storage

nodes in a content addressable storage system for storing

content addressable blocks. Our key servers act as access

nodes for providing a front-end layer such as a traditional file

system interface. Further study on detailed cooperation is

required.

 REFERENCES

[1] “A Secure Erasure Code-Based Cloud Storage System with

Secure Data Forwarding”

Hsiao-Ying Lin, Member, IEEE, and Wen-Guey Tzeng, Member,

IEEE, IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, VOL. 23, NO. 6, JUNE 2012.

[2]J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R.

Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B.

Zhao, “Oceanstore: An chitecture for Global-Scale Persistent

Storage,” Proc. Ninth Int’l Conf. Architectural Support for

Programming Languages and Operating Systems (ASPLOS), pp.

190 201, 2000.

[3] P. Druschel and A. Rowstron, “PAST: A Large-Scale, Persistent

Peer-to-Peer Storage Utility,” Proc. Eighth Workshop Hot Topics in

Operating System (HotOS VIII), pp. 75-80, 2001.

[4] A. Adya, W.J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J.R.

Douceur, J. Howell, J.R. Lorch, M. Theimer, and R. Wattenhofer,

“Farsite: Federated, Available, and Reliable Storage for an

International Conference on Advances In Computing ,Electrical and Communication Engineering(ICACECE-2017)

International Journal of Advanced Scientific Technologies, Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.3,Special Issue.1,May.2017

www.ijastems.org Page 107

Incompletely Trusted Environment,” Proc. Fifth Symp. Operating

System Design and Implementation (OSDI), pp. 1-14, 2002.

[5] A. Haeberlen, A. Mislove, and P. Druschel, “Glacier: Highly

Durable, Decentralized Storage Despite Massive Correlated

Failures,” Proc. Second Symp. Networked Systems Design and

Implementation (NSDI), pp. 143-158, 2005.

[6] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: The Least-

Authority Filesystem,” Proc. Fourth ACM Int’l Workshop Storage

Security and Survivability (StorageSS), pp. 21-26, 2008.

[7] H.-Y. Lin and W.-G. Tzeng, “A Secure Decentralized Erasure

Code for Distributed Network Storage,” IEEE Trans. Parallel and

Distributed Systems, vol. 21, no. 11, pp. 1586-1594, Nov. 2010.

[8] D.R. Brownbridge, L.F. Marshall, and B. Randell, “The

Newcastle Connection or Unixes of the World Unite!,” Software

Practice and Experience, vol. 12, no. 12, pp. 1147-1162, 1982.

[9] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon,

“Design and Implementation of the Sun Network Filesystem,” Proc.

USENIX Assoc. Conf., 1985.

[10] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K.

Fu, “Plutus: Scalable Secure File Sharing on Untrusted Storage,”

Proc. Second USENIX Conf. File and Storage Technologies

(FAST), pp. 29- 42, 2003.

[11] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G.M.

Voelker, “Total Recall: System Support for Automated Availability

Management,” Proc. First Symp. Networked Systems Design and

Implementation (NSDI), pp. 337-350, 2004.

[12] A.G. Dimakis, V. Prabhakaran, and K. Ramchandran,

“Ubiquitous Access to Distributed Data in Large-Scale Sensor

Networks through Decentralized Erasure Codes,” Proc. Fourth Int’l

Symp. Information Processing in Sensor Networks (IPSN), pp. 111-

117, 2005.

[13] A.G. Dimakis, V. Prabhakaran, and K. Ramchandran,

“Decentralized Erasure Codes for Distributed Networked Storage,”

IEEE Trans. Information Theory, vol. 52, no. 6 pp. 2809-2816,

June 2006.

[14] M. Mambo and E. Okamoto, “Proxy Cryptosystems:

Delegation of the Power to Decrypt Ciphertexts,” IEICE Trans.

Fundamentals of Electronics, Comm. and Computer Sciences, vol.

E80-A, no. 1, pp. 54-63, 1997.

[15] M. Blaze, G. Bleumer, and M. Strauss, “Divertible Protocols

and Atomic Proxy Cryptography,” Proc. Int’l Conf. Theory and

Application of Cryptographic Techniques (EUROCRYPT), pp.

127-144, 1998.

[16] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved

Proxy Re-Encryption Schemes with Applications to Secure

Distributed Storage,” ACM Trans. Information and System

Security, vol. 9, no. 1, pp. 1-30, 2006.

[17] Q. Tang, “Type-Based Proxy Re-Encryption and Its

Construction,” Proc. Ninth Int’l Conf. Cryptology in India:

Progress in Cryptology (INDOCRYPT), pp. 130-144, 2008.

[18] G. Ateniese, K. Benson, and S. Hohenberger, “Key-Private

Proxy Re-Encryption,” Proc. Topics in Cryptology (CT-RSA), pp.

279-294, 2009.

[19] J. Shao and Z. Cao, “CCA-Secure Proxy Re-Encryption

without Pairings,” Proc. 12th Int’l Conf. Practice and Theory in

Public Key Cryptography (PKC), pp. 357-376, 2009.

[20] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.

Peterson, and D. Song, “Provable Data Possession at Untrusted

Stores,” Proc. 14th ACM Conf. Computer and Comm. Security

(CCS), pp. 598-609, 2007.

[21] G. Ateniese, R.D. Pietro, L.V. Mancini, and G. Tsudik,

“Scalable and Efficient Provable Data Possession,” Proc. Fourth

Int’l Conf. Security and Privacy in Comm. Netowrks

(SecureComm), pp. 1-10,

2008.

[22] H. Shacham and B. Waters, “Compact Proofs of

Retrievability,” Proc. 14th Int’l Conf. Theory and Application of

Cryptology and Information Security (ASIACRYPT), pp. 90-107,

2008.

[23] G. Ateniese, S. Kamara, and J. Katz, “Proofs of Storage from

Homomorphic Identification Protocols,” Proc. 15th Int’l Conf.

Theory and Application of Cryptology and Information Security

(ASIACRYPT), pp. 319-333, 2009.

[24] K.D. Bowers, A. Juels, and A. Oprea, “HAIL: A High-

Availability and Integrity Layer for Cloud Storage,” Proc. 16th

ACM Conf. Computer and Comm. Security (CCS), pp. 187-198,

2009.

[25] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving

Public Auditing for Data Storage Security in Cloud Computing,”

Proc. IEEE 29th Int’l Conf. Computer Comm. (INFOCOM), pp.

525- 533, 2010.

[26] A. Shamir, “How to Share a Secret,” ACM Comm., vol. 22, pp.

612- 613, 1979.

[27] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian, P.

Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki,

“Hydrastor: A Scalable Secondary Storage,” Proc. Seventh Conf.

File and Storage Technologies (FAST), pp. 197-210, 2009.

[28] A Secure Erasure Code-Based Cloud Storage

System with Secure Data Forwarding

Hsiao-Ying Lin, Member, IEEE, and Wen-Guey Tzeng, Member,

IEEE Transactions On Parallel And Distributed Systems, Vol. 23,

No. 6, June 2012

Author’s Profile:

D.Anandam , Asst.Professor ,Dept of CSE,

PACE Institute of Technology &

Sciences,Ongole.He have 8 Years Teaching

Experience. His Interested Areas are Cloud

Computing,Bigdata,Network Security.

Sreenivasulu Bolla , Asst.Professor ,Dept of

CSE, PACE Institute of Technology &

Sciences,Ongole.He have 5 Years Teaching

Experience. His Interested Areas are Bigdata,

Cloud Computing.

