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Abstract: As enhancement we propose Detection of emerging topics from social networks of big data. Conventional-term-frequency-based 

approaches may not be appropriate in this context. We focus on emergence of topics signaled by social aspects of theses networks. 

Specifically, we focus on mentions of user links between users that are generated dynamically (intentionally or unintentionally) through 

replies, mentions, and retweets. We propose a probability model of the mentioning behavior of a social network user, and propose to detect 

the emergence of a new topic from the anomalies measured through the model. Aggregating anomaly scores from hundreds of users, we 

show that we can detect emerging topics only based on the reply/mention relationships in social-network posts. We demonstrate our 

technique in several real data sets we gathered from Twitter. The experiments show that the proposed mention-anomaly-based approaches 

can detect new topics at least as early as text-anomaly-based approaches, and in some cases much earlier when the topic is poorly identified 

by the textual contents in posts. 

I. INTRODUCTION  

Generally, data mining (sometimes called data or knowledge 

discovery) is the process of analyzing data from different 

perspectives and summarizing it into useful information - 

information that can be used to increase revenue, cuts costs, or 

both. Data mining software is one of a number of analytical 

tools for analyzing data. It allows users to analyze data from 

many different dimensions or angles, categorize it, and 

summarize the relationships identified. Technically, data 

mining is the process of finding correlations or patterns among 

dozens of fields in large relational databases. 

 Along with the above example, the era of Big Data has 

arrived [37], [34], [29]. Every day, 2.5 quintillion bytes of data 

are created and 90 percent of the data in the world today were 

produced within the past two years [26]. Our capability for 

data generation has never been so powerful and enormous ever 

since the invention of the information technology in the early 

19th century. As another example, on 4 October 2012, the first 

presidential debate between President Barack Obama and 

Governor Mitt Romney triggered more than 10 million tweets 

within 2 hours [46]. Among all these tweets, the specific 

moments that generated the most discussions actually revealed 

the public interests, such as the discussions about medicare 

and vouchers. Such online discussions provide a new means to 

sense the public interests and generate feedback in realtime, 

and are mostly appealing compared to generic media, such as 

radio or TV broadcasting. Another example is Flickr, a public 

picture sharing site, which received 1.8 million photos per day, 

on average, from February to March 2012 [35]. Assuming the 

size of each photo is 2 megabytes (MB), this requires 3.6 

terabytes (TB) storage every single day. Indeed, as an old 

saying states: “a picture is worth a thousand words,” the 

billions of pictures on Flicker are a treasure tank for us to 

explore the human society, social events, public affairs, 

disasters, and so on, only if we have the power to harness the 

enormous amount of data. 

The above examples demonstrate the rise of Big Data 

applications where data collection has grown tremendously 

and is beyond the ability of commonly used software tools to 

capture, manage, and process within a “tolerable elapsed 

time.” The most fundamental challenge for Big Data 

applications is to explore the large volumes of data and extract 

useful information or knowledge for future actions [40]. In 

many situations, the knowledge extraction process has to be 

very efficient and close to real time because storing all 

observed data is nearly infeasible. For example, the square 

kilometer array (SKA) [17] in radio astronomy consists of 

1,000 to 1,500 15-meter dishes in a central 5-km area. It 

provides 100 times more sensitive vision than any existing 

radio telescopes, answering fundamental questions about the 

Universe. However, with a 40 gigabytes (GB)/second data 

volume, the data generated from the SKA are exceptionally 

large. Although researchers have confirmed that interesting 

patterns, such as transient radio anomalies [41] can be 

discovered from the SKA data, existing methods can only 

work in an offline fashion and are incapable of handling this 

Big Data scenario in real time. As a result, the unprecedented 

data volumes require an effective data analysis and prediction 

platform to achieve fast response and real-time classification 

for such Big Data. 

The remainder of the paper is structured as follows: In Section 

2, we propose a HACE theorem to model Big Data 

characteristics. Section 3 summarizes the key challenges 

for  

Fig. 1. The blind men and the  elephant:  

II. BIG DATA CHARACTERISTICS HACE THEOREM  

Big Data starts with large-volume, heterogeneous, autonomous 

sources with distributed and decentralized control, and seeks 

to explore complex and evolving relationships among data. 
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These characteristics make it an extreme challenge for 

discovering useful knowledge from the Big Data. In a naı¨ve 

sense, we can imagine that a number of blind men are trying to 

size up a giant elephant (see Fig. 1), which will be the Big 

Data in this context. The goal of each blind man is to draw a 

picture (or conclusion) of the elephant according to the part of 

information he collects during the process. Because each 

person’s view is limited to his local region, it is not surprising 

that the blind men will each conclude independently that the 

elephant “feels” like a rope, a hose, or a wall, depending on 

the region each of them is limited to. To make the problem 

even more complicated, let us assume that 1) the elephant is 

growing rapidly and its pose changes constantly, and 2) each 

blind man may have his own (possible unreliable and 

inaccurate) information sources that tell him about biased 

knowledge about the elephant (e.g., one blind man may 

exchange his feeling about the elephant with another blind 

man, where the exchanged knowledge is inherently biased). 

Exploring the Big Data in this scenario is equivalent to 

aggregating heterogeneous information from different sources 

(blind men) to help draw a best possible picture to reveal the 

genuine gesture of the elephant in a real-time fashion. Indeed, 

this task is not as simple as asking each blind man to describe 

his feelings about the elephant and then getting an expert to 

draw one single picture with a combined view, concerning that 

each individual may speak a different language 

(heterogeneous and diverse information sources) and they may 

even have privacy concerns about the messages they deliberate 

in the information exchange process. 

2.1 Huge Data with Heterogeneous and Diverse 

Dimensionality  

One of the fundamental characteristics of the Big Data is the 

huge volume of data represented by heterogeneous anddiverse 

dimensionalities. This is because different information 

collectors prefer their own schemata or protocols for data 

recording, and the nature of different applications also results 

in diverse data representations. For example, each single 

human being in a biomedical world can be represented by 

using simple demographic information such as gender, age, 

family disease history, and so on. For X-ray examination and 

CT scan of each individual, images or videos are used to 

represent the results because they provide visual information 

for doctors to carry detailed examinations. For a DNA or 

genomic-related test, microarray expression images and 

sequences are used to represent the genetic code information 

because this is the way that our current techniques acquire the 

data. Under such circumstances, the heterogeneous features 

refer to the different types of representations for the same 

individuals, and the diverse features refer to the variety of the 

features involved to represent each single observation. 

Imagine that different organizations (or health practitioners) 

may have their own schemata to represent each patient, the 

data heterogeneity and diverse dimensionality issues become 

major challenges if we are trying to enable data aggregation by 

combining data from all sources. 

2.2 Autonomous Sources with Distributed and 

Decentralized Control 

Autonomous data sources with distributed and decentralized 

controls are a main characteristic of Big Data applications. 

Being autonomous, each data source is able to generate and 

collect information without involving (or relying on) any 

centralized control. This is similar to the World Wide Web 

(WWW) setting where each web server provides a certain 

amount of information and each server is able to fully function 

without necessarily relying on other servers. On the other 

hand, the enormous volumes of the data also make an 

application vulnerable to attacks or malfunctions, if the whole 

system has to rely on any centralized control unit. For major 

Big Data-related applications, such as Google, Flicker, 

Facebook, and Walmart, a large number of server farms are 

deployed all over the world to ensure nonstop services and 

quick responses for local markets. Such autonomous sources 

are not only the solutions of the technical designs, but also the 

results of the legislation and the regulation rules in different 

countries/ regions. For example, Asian markets of Walmart are 

inherently different from its North American markets in terms 

of seasonal promotions, top sell items, and customer 

behaviors. More specifically, the local government regulations 

also impact on the wholesale management process and result 

in restructured data representations and data warehouses for 

local markets. 

2.3 Complex and Evolving Relationships 

While the volume of the Big Data increases, so do the 

complexity and the relationships underneath the data. In an 

early stage of data centralized information systems, the focus 

is on finding best feature values to represent each observation. 

This is similar to using a number of data fields, such as age, 

gender, income, education background, and so on, to 

characterize each individual. This type of samplefeature 

representation inherently treats each individual as an 

independent entity without considering their social 

connections, which is one of the most important factors of 

 
Fig. 2. A Big Data processing framework: The research 

challenges form a three tier structure and center around the 

“Big Data mining platform” (Tier I), which focuses on low-

level data accessing and computing. Challenges on 

information sharing and privacy, and Big Data application 

domains and knowledge form Tier II, which concentrates on 
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high-level semantics, application domain knowledge, and user 

privacy issues. The outmost circle shows Tier III challenges 

on actual mining algorithms. 

For example, major social network sites, such as Facebook or 

Twitter, are mainly characterized by social functions such as 

friend-connections and followers (in Twitter). The correlations 

between individuals inherently complicate the whole data 

representation and any reasoning process on the data. In the 

sample-feature representation, individuals are regarded similar 

if they share similar feature values, whereas in the sample-

feature-relationship representation, two individuals can be 

linked together (through their social connections) even though 

they might share nothing in common in the feature domains at 

all. In a dynamic world, the features used to represent the 

individuals and the social ties used to represent our 

connections may also evolve with respect to temporal, spatial, 

and other factors. Such a complication is becoming part of the 

reality for Big Data applications, where the key is to take the 

complex (nonlinear, many-to-many) data relationships, along 

with the evolving changes, into consideration, to discover 

useful patterns from Big Data collections. 

III.DATA MINING CHALLENGES WITH BIG DATA 

For an intelligent learning database system [52] to handle Big 

Data, the essential key is to scale up to the exceptionally large 

volume of data and provide treatments for the characteristics 

featured by the aforementioned HACE theorem. Fig. 2 shows 

a conceptual view of the Big Data processing framework, 

which includes three tiers from inside out with considerations 

on data accessing and computing (Tier I), data privacy and 

domain knowledge (Tier II), and Big Data mining algorithms 

(Tier III). The challenges at Tier I focus on data accessing and 

arithmetic computing procedures. Because Big Data are often 

stored at different locations and data volumes may 

continuously grow, an effective computing platform will have 

to take distributed large-scale data storage into consideration 

for computing. For example, typical data mining algorithms 

require all data to be loaded into the main memory, this, 

however, is becoming a clear technical barrier for Big Data 

because moving data across different locations is expensive 

(e.g., subject to intensive network communication and other 

IO costs), even if we do have a super large main memory to 

hold all data for computing. The challenges at Tier II center 

around semantics and domain knowledge for different Big 

Data applications. Such information can provide additional 

benefits to the mining process, as well as add technical 

barriers to the Big Data access (Tier I) and mining algorithms 

(Tier III). For example, depending on different domain 

applications, the data privacy and information sharing 

mechanisms between data producers and data consumers can 

be significantly different. Sharing sensor network data for 

applications like water quality monitoring may not be 

discouraged, whereas releasing and sharing mobile users’ 

location information is clearly not acceptable for majority, if 

not all, applications. In addition to the above privacy issues, 

the application domains can also provide additional 

information to benefit or guide Big Data mining algorithm 

designs. For example, in market basket transactions data, each 

transaction is considered independent and the discovered 

knowledge is typically represented by finding highly 

correlated items, possibly with respect to different temporal 

and/or spatial restrictions. In a social network, on the other 

hand, users are linked and share dependency structures. The 

knowledge is then represented by user communities, leaders in 

each group, and social influence modeling, and so on. 

Therefore, understanding semantics and application 

knowledge is important for both low-level data access and for 

high-level mining algorithm designs. At Tier III, the data 

mining challenges concentrate on algorithm designs in 

tackling the difficulties raised by the Big Data volumes, 

distributed data distributions, and by complex and dynamic 

data characteristics. The circle at Tier III contains three stages. 

First, sparse, heterogeneous, uncertain, incomplete, and 

multisource data are preprocessed by data fusion techniques. 

Second, complex and dynamic data are mined after 

preprocessing. Third, the global knowledge obtained by local 

learning and model fusion is tested and relevant information is 

fedback to the preprocessing stage. Then, the model and 

parameters are adjusted according to the feedback. In the 

whole process, information sharing is not only a promise of 

smooth development of each stage, but also a purpose of Big 

Data processing. In the following, we elaborate challenges 

with respect to the three tier framework in Fig. 2. 

3.1 Tier I: Big Data Mining Platform 

In typical data mining systems, the mining procedures require 

computational intensive computing units for data analysis and 

comparisons. A computing platform is, therefore, needed to 

have efficient access to, at least, two types of resources: data 

and computing processors. For small scale data mining tasks, a 

single desktop computer, which contains hard disk and CPU 

processors, is sufficient to fulfill the data mining goals. 

Indeed, many data mining algorithm are designed for this type 

of problem settings. For medium scale data mining tasks, data 

are typically large (and possibly distributed) and cannot be fit 

into the main memory. Common solutions are to rely on 

parallel computing [43], [33] or collective mining [12] to 

sample and aggregate data from different sources and then use 

parallel computing programming (such as the Message 

Passing Interface) to carry out the mining process. For Big 

Data mining, because data scale is far beyond the capacity that 

a single personal computer (PC) can handle, a typical Big Data 

processing framework will rely on cluster computers with a 

high-performance computing platform, with a data mining task 

being deployed by running some parallel programming tools, 

such as Map Reduce or Enterprise Control Language (ECL), 

on a large number of computing nodes (i.e., clusters). The role 

of the software component is to make sure that a single data 

mining task, such as finding the best match of a query from a 

database with billions of records, is split into many small tasks 

each of which is running on one or multiple computing nodes. 

For example, as of this writing, the world most powerful super 

computer Titan, which is deployed at Oak Ridge National 

Laboratory in Tennessee, contains 18,688 nodes each with a 
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16-core CPU. Such a Big Data system, which blends both 

hardware and software components, is hardly available 

without key industrial stockholders’ support. In fact, for 

decades, companies have been making business decisions 

based on transactional data stored in relational databases. Big 

Data mining offers opportunities to go beyond traditional 

relational databases to rely on less structured data: weblogs, 

social media, e-mail, sensors, and photographs that can be 

mined for useful information. Major business intelligence 

companies, such IBM, Oracle, Teradata, and so on, have all 

featured their own products to help customers acquire and 

organize these diverse data sources and coordinate with 

customers’ existing data to find new insights and capitalize on 

hidden relationships. 

3.2 Tier II: Big Data Semantics and Application 

Knowledge 

Semantics and application knowledge in Big Data refer to 

numerous aspects related to the regulations, policies, user 

knowledge, and domain information. The two most important 

issues at this tier include 1) data sharing and privacy; and 2) 

domain and application knowledge. The former provides 

answers to resolve concerns on how data are maintained, 

accessed, and shared; whereas the latter focuses on answering 

questions like “what are the underlying applications ?” and 

“what are the knowledge or patterns users intend to discover 

from the data ?” 

3.2.1 Information Sharing and Data Privacy 

Information sharing is an ultimate goal for all systems 

involving multiple parties [24]. While the motivation for 

sharing is clear, a real-world concern is that Big Data 

applications are related to sensitive information, such as 

banking transactions and medical records. Simple data 

exchanges or transmissions do not resolve privacy concerns 

[19], [25], [42]. For example, knowing people’s locations and 

their preferences, one can enable a variety of useful location-

based services, but public disclosure of an individual’s 

locations/movements over time can have serious consequences 

for privacy. To protect privacy, two common approaches are 

to 1) restrict access to the data, such as adding certification or 

access control to the data entries, so sensitive information is 

accessible by a limited group of users only, and 2) anonymize 

data fields such that sensitive information cannot be 

pinpointed to an individual record [15]. For the first approach, 

common challenges are to design secured certification or 

access control mechanisms, such that no sensitive information 

can be misconducted by unauthorized individuals. For data 

anonymization, the main objective is to inject randomness into 

the data to ensure a number of privacy goals. For example, the 

most common k-anonymity privacy measure is to ensure that 

each individual in the database must be indistinguishable from 

others. Common anonymization approaches are to use 

suppression, generalization, perturbation, and permutation to 

generate an altered version of the data, which is, in fact, some 

uncertain data. One of the major benefits of the data 

annomization-based information sharing approaches is that, 

once anonymized, data can be freely shared across different 

parties without involving restrictive access controls. This 

naturally leads to another research area namely privacy 

preserving data mining [30], where multiple parties, each 

holding some sensitive data, are trying to achieve a common 

data mining goal without sharing any sensitive information 

inside the data. This privacy preserving mining goal, in 

practice, can be solved through two types of approaches 

including 1) using special communication protocols, such as 

Yao’s protocol [54], to request the distributions of the whole 

data set, rather than requesting the actual values of each 

record, or 2) designing special data mining methods to derive 

knowledge from anonymized data (this is inherently similar to 

the uncertain data mining methods).  

3.2.2 Domain and Application Knowledge Domain and 

application knowledge [28] provides essential information for 

designing Big Data mining algorithms and systems. In a 

simple case, domain knowledge can help identify right 

features for modeling the underlying data (e.g., blood glucose 

level is clearly a better feature than body mass in diagnosing 

Type II diabetes). The domain and application knowledge can 

also help design achievable business objectives by using Big 

Data analytical techniques. For example, stock market data are 

a typical domain that constantly generates a large quantity of 

information, such as bids, buys, and puts, in every single 

second. The market continuously evolves and is impacted by 

different factors, such as domestic and international news, 

government reports, and natural disasters, and so on. An 

appealing Big Data mining task is to design a Big Data mining 

system to predict the movement of the market in the next one 

or two minutes. Such systems, even if the prediction accuracy 

is just slightly better than random guess, will bring significant 

business values to the developers [9]. Without correct domain 

knowledge, it is a clear challenge to find effective 

matrices/measures to characterize the market movement, and 

such knowledge is often beyond the mind of the data miners, 

although some recent research has shown that using social 

networks, such as Twitter, it is possible to predict the stock 

market upward/downward trends [7] with good accuracies. 

3.3 Tier III: Big Data Mining Algorithms 

3.3.1 Local Learning and Model Fusion for Multiple  

Information Sources As Big Data applications are featured 

with autonomous sources and decentralized controls, 

aggregating distributed data sources to a centralized site for 

mining is systematically prohibitive due to the potential 

transmission cost and privacy concerns. On the other hand, 

although we can always carry out mining activities at each 

distributed site, the biased view of the data collected at each 

site often leads to biased decisions or models, just like the 

elephant and blind men case. Under such a circumstance, a 

Big Data mining system has to enable an information 

exchange and fusion mechanism to ensure that all distributed 

sites (or information sources) can work together to achieve a 

global optimization goal. Model mining and correlations are 

the key steps to ensure that models or patterns discovered from 

multiple information sources can be consolidated to meet the 

global mining objective. More specifically, the global mining 
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can be featured with a two-step (local mining and global 

correlation) process, at data, model, and at knowledge levels. 

At the data level, each local site can calculate the data 

statistics based on the local data sources and exchange the 

statistics between sites to achieve a global data distribution 

view. At the model or pattern level, each site can carry out 

local mining activities, with respect to the localized data, to 

discover local patterns. By exchanging patterns between 

multiple sources, new global patterns can be synthetized by 

aggregating patterns across all sites [50]. At the knowledge 

level, model correlation analysis investigates the relevance 

between models generated from different data sources to 

determine how relevant the data sources are correlated with 

each other, and how to form accurate decisions based on 

models built from autonomous sources. 

3.3.2 Mining from Sparse, Uncertain, and Incomplete  Data 

Spare, uncertain, and incomplete data are defining features for 

Big Data applications. Being sparse, the number of data points 

is too few for drawing reliable conclusions. This is normally a 

complication of the data dimensionality issues, where data in a 

high-dimensional space (such as more than 1,000 dimensions) 

do not show clear trends or distributions. For most machine 

learning and data mining algorithms, high-dimensional spare 

data significantly deteriorate the reliability of the models 

derived from the data. Common approaches are to employ 

dimension reduction or feature selection [48] to reduce the 

data dimensions or to carefully include additional samples to 

alleviate the data scarcity, such as generic unsupervised 

learning methods in data mining. Uncertain data are a special 

type of data reality where each data field is no longer 

deterministic but is subject to some random/error distributions. 

This is mainly linked to domain specific applications with 

inaccurate data readings and collections. For example, data 

produced from GPS equipment are inherently uncertain, 

mainly because the technology barrier of the device limits the 

precision of the data to certain levels (such as 1 meter). As a 

result, each recording location is represented by a mean value 

plus a variance to indicate expected errors. For data privacy 

related applications [36], users may intentionally inject 

randomness/errors into the data to remain anonymous. This is 

similar to the situation that an individual may not feel 

comfortable to let you know his/her exact income, but will be 

fine to provide a rough range like [120k, 160k]. For uncertain 

data, the major challenge is that each data item is represented 

as sample distributions but not as a single value, so most 

existing data mining algorithms cannot be directly applied. 

Common solutions are to take the data distributions into 

consideration to estimate model parameters. For example, 

error aware data mining [49] utilizes the mean and the 

variance values with respect to each single data item to build a 

Bayes model for classification. Similar approaches have also 

been applied for decision trees or database queries. Incomplete 

data refer to the missing of data field values for some samples. 

The missing values can be caused by different realities, such 

as the malfunction of a sensor node, or some systematic 

policies to intentionally skip some values (e.g., dropping some 

sensor node readings to save power for transmission). While 

most modern data mining algorithms have in-built solutions to 

handle missing values (such as ignoring data fields with 

missing values), data imputation is an established research 

field that seeks to impute missing values to produce improved 

models (compared to the ones built from the original data). 

Many imputation methods [20] exist for this purpose, and the 

major approaches are to fill most frequently observed values 

or to build learning models to predict possible values for each 

data field, based on the observed values of a given instance. 

3.3.3 Mining Complex and Dynamic Data 

The rise of Big Data is driven by the rapid increasing of 

complex data and their changes in volumes and in nature [6]. 

Documents posted on WWW servers, Internet backbones, 

social networks, communication networks, and transportation 

networks, and so on are all featured with complex data. While 

complex dependency structures underneath the data raise the 

difficulty for our learning systems, they also offer exciting 

opportunities that simple data representations are incapable of 

achieving. For example, researchers have successfully used 

Twitter, a well-known social networking site, to detect events 

such as earthquakes and major social activities, with nearly 

realtime speed and very high accuracy. In addition, by 

summarizing the queries users submitted to the search engines, 

which are all over the world, it is now possible to build an 

early warning system for detecting fast spreading flu outbreaks 

[23]. Making use of complex data is a major challenge for Big 

Data applications, because any two parties in a complex 

network are potentially interested to each other with a social 

connection. Such a connection is quadratic with respect to the 

number of nodes in the network, so a million node network 

may be subject to one trillion connections. For a large social 

network site, like Facebook, the number of active users has 

already reached 1 billion, and analyzing such an enormous 

network is a big challenge for Big Data mining. If we take 

daily user actions/interactions into consideration, the scale of 

difficulty will be even more astonishing. Inspired by the above 

challenges, many data mining methods have been developed 

to find interesting knowledge from Big Data with complex 

relationships and dynamically changing volumes. For 

example, finding communities and tracing their dynamically 

evolving relationships are essential for understanding and 

managing complex systems [3], [10]. Discovering outliers in a 

social network [8] is the first step to identify spammers and 

provide safe networking environments to our society. If only 

facing with huge amounts of structured data, users can solve 

the problem simply by purchasing more storage or improving 

storage efficiency. However, Big Data complexity is 

represented in many aspects, including complex 

heterogeneous data types, complex intrinsic semantic 

associations in data, and complex relationship networks 

among data. That is to say, the value of Big Data is in its 

complexity. Complex heterogeneous data types. In Big Data, 

data types include structured data, unstructured data, and 

semistructured data, and so on. Specifically, there are tabular 

data (relational databases), text, hyper-text, image, audio and 
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video data, and so on. The existing data models include key-

value stores, bigtable clones, document databases, and graph 

databases, which are listed in an ascending order of the 

complexity of these data models. Traditional data models are 

incapable of handling complex data in the context of Big Data. 

Currently, there is no acknowledged effective and efficient 

data model to handle Big Data. Complex intrinsic semantic 

associations in data. News on the web, comments on Twitter, 

pictures on Flicker, and clips of video on YouTube may 

discuss about an academic award winning event at the same 

time. There is no doubt that there are strong semantic 

associations in these data. Mining complex semantic 

associations from “text-image-video” data will significantly 

help improve application system performance such as search 

engines or recommendation systems. However, in the context 

of Big Data, it is a great challenge to efficiently describe 

semantic features and to build semantic association models to 

bridge the semantic gap of various heterogeneous data 

sources. Complex relationship networks in data. In the context 

of Big Data, there exist relationships between individuals. On 

the Internet, individuals are webpages and the pages linking to 

each other via hyperlinks form a complex network. There also 

exist social relationships between individuals forming 

complex social networks, such as big relationship data from 

Facebook, Twitter, LinkedIn, and other social media [5], [13], 

[56], including call detail records (CDR), devices and sensors 

information [1], [44], GPS and geo coded map data, massive 

image files transferred by the Manage File Transfer protocol, 

web text and click-stream data [2], scientific information, e-

mail [31], and so on. To deal with complex relationship 

networks, emerging research efforts have begun to address the 

issues of structure-and-evolution, crowds-and-interaction, and 

information-and-communication. The emergence of Big Data 

has also spawned new computer architectures for real-time 

data-intensive processing, such as the open source Apache 

Hadoop project that runs on high-performance clusters. The 

size or complexity of the Big Data, including transaction and 

interaction data sets, exceeds a regular technical capability in 

capturing, managing, and processing these data within 

reasonable cost and time limits. In the context of Big Data, 

real-time processing for complex data is a very challenging 

task. 

IV. RESEARCH INITIATIVES AND PROJECTS 

To tackle the Big Data challenges and “seize the opportunities 

afforded by the new, data driven resolution,” the US National 

Science Foundation (NSF), under President Obama 

Administration’s Big Data initiative, announced the 

BIGDATA solicitation in 2012. Such a federal initiative has 

resulted in a number of winning projects to investigate the 

foundations for Big Data management (led by the University 

of Washington), analytical approaches for genomics-based 

massive data computation (led by Brown University), large 

scale machine learning techniques for high-dimensional data 

sets that may be as large as 500,000 dimensions (led by 

Carnegie Mellon University), social analytics for large scale 

scientific literatures (led by Rutgers University), and several 

others. These projects seek to develop methods, algorithms, 

frameworks, and research infrastructures that allow us to bring 

the massive amounts of data down to a human manageable and 

interpretable scale. Other countries such as the National 

Natural Science Foundation of China (NSFC) are also 

catching up with national grants on Big Data research. 

Meanwhile, since 2009, the authors have taken the lead in the 

following national projects that all involve Big Data 

components:  

Integrating and mining biodata from multiple sources in 

biological networks, sponsored by the US National Science 

Foundation, Issues and significance. We have integrated and 

mined biodata from multiple sources to decipher and utilize 

the structure of biological networks to shed new insights on 

the functions of biological systems. We address the theoretical 

underpinnings and current and future enabling technologies 

for integrating and mining biological networks. We have 

expanded and integrated the techniques and methods in 

information acquisition, transmission, and processing for 

information networks. We have developed methods for 

semantic-based data integration, automated hypothesis 

generation from mined data, and automated scalable analytical 

tools to evaluate simulation results and refine models. 

We propose to build a stream-based Big Data analytic 

framework for fast response and real-time decision making. 

The key challenges and research issues include: 

- designing Big Data sampling mechanisms to reduce Big Data 

volumes to a manageable size for processing; 

- building prediction models from Big Data streams. Such 

models can adaptively adjust to the dynamic changing of the 

data, as well as accurately predict the trend of the data in the 

future; and 

- a knowledge indexing framework to ensure real-time data 

monitoring and classification for Big Data applications. 

Issues and significance. We perform a systematic investigation 

on pattern matching, pattern mining with wildcards, and 

application problems as follows: 

- exploration of the NP-hard complexity of the matching and 

mining problems, 

- multiple pattern matching with wildcards, 

- approximate pattern matching and mining, and 

- application of our research onto ubiquitous personalized 

information processing and bioinformatics. 

. We have performed an investigation on the availability and 

statistical regularities of multisource, massive and dynamic 

information, including cross-media search based on 

information extraction, sampling, uncertain information 

querying, and cross-domain and cross-platform 

information polymerization. To break through the limitations 

of traditional data mining methods, we have studied 

heterogeneous information discovery and mining in complex 

inline data, mining in data streams, multi granularity 

knowledge discovery from massive multisource data, 

distribution regularities of massive knowledge, quality fusion 

of massive knowledge. 
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. We have studied group influence and interactions in social 

networks, including 

- employing group influence and information diffusion 

models, and deliberating group interaction rules in social 

networks using dynamic game theory, 

- studying interactive individual selection and effect 

evaluations under social networks affected by group emotion, 

and analyzing emotional interactions and influence among 

individuals and groups, and 

- establishing an interactive influence model and its computing 

methods for social network groups, to reveal the interactive 

influence effects and evolution of social networks.  

V. RELATED WORK 

5.1 Big Data Mining Platforms (Tier I) 

Due to the multisource, massive, heterogeneous, and dynamic 

characteristics of application data involved in a distributed 

environment, one of the most important characteristics of Big 

Data is to carry out computing on the petabyte (PB), even the 

exabyte (EB)-level data with a complex computing process. 

Therefore, utilizing a parallel computing infrastructure, its 

corresponding programming language support, and software 

models to efficiently analyze and mine the distributed data are 

the critical goals for Big Data processing to change from 

“quantity” to “quality.” Currently, Big Data processing mainly 

depends on parallel programming models like MapReduce, as 

well as providing a cloud computing platform of Big Data 

services for the public. MapReduce is a batch-oriented parallel 

computing model. There is still a certain gap in performance 

with relational databases. Improving the performance of 

MapReduce and enhancing the real-time nature of large-scale 

data processing have received a significant amount of 

attention, with MapReduce parallel programming being 

applied to many machine learning and data mining algorithms. 

Data mining algorithms usually need to scan through the 

training data for obtaining the statistics to solve or optimize 

model parameters. It calls for intensive computing to access 

the large-scale data frequently. To improve the efficiency of 

algorithms, Chu et al. proposed a general-purpose parallel 

programming method, which is applicable to a large number 

of machine learning algorithms based on the simple 

MapReduce programming model on multi core processors. 

Ten classical data mining algorithms are realized in the 

framework, including locally weighted linear regression, k-

Means, logistic regression, naive Bayes, linear support vector 

machines, the independent variable analysis, Gaussian 

discriminant analysis, expectation maximization, and back-

propagation neural networks [14]. With the analysis of these 

classical machine learning algorithms, we argue that the 

computational operations in the algorithm learning process 

could be 

transformed into a summation operation on a number of 

training data sets. Summation operations could be performed 

on different subsets independently and achieve penalization 

executed easily on the MapReduce programming platform. 

Therefore, a large-scale data set could be  divided into several 

subsets and assigned to multiple Mapper nodes. Then, various 

summation operations could be performed on the Mapper 

nodes to collect intermediate results. Finally, learning 

algorithms are executed in parallel through merging 

summation on Reduce nodes. Ranger et al. [39] proposed a 

MapReduce-based application programming interface 

Phoenix, which supports parallel programming in the 

environment of multicore and multiprocessor systems, and 

realized three data mining algorithms including k-Means, 

principal component analysis, and linear regression. Gillick et 

al. [22] improved the MapReduce’s implementation 

mechanism in Hadoop, evaluated the algorithms’ performance 

of single-pass learning, iterative learning, and query-based 

learning in the MapReduce framework, studied data sharing 

between computing nodes involved in parallel learning 

algorithms, distributed data storage, and then showed that the 

MapReduce mechanisms suitable for large-scale data mining 

by testing series of standard data mining tasks on medium-size 

clusters. Papadimitriou and Sun [38] proposed a distributed 

collaborative aggregation (DisCo) framework using practical 

distributed data preprocessing and collaborative aggregation 

techniques. The implementation on Hadoop in an open source 

MapReduce project showed that DisCo has perfect scalability 

and can process and analyze massive data sets (with hundreds 

of GB). To improve the weak scalability of traditional analysis 

software and poor analysis capabilities of Hadoop systems, 

Das et al. [16] conducted a study of the integration of R (open 

source statistical analysis software) and Hadoop. The in-depth 

integration pushes data computation to parallel processing, 

which enables powerful deep analysis capabilities for Hadoop. 

Wegener et al. [47] achieved the integration of Weka (an 

open-source machine learning and data mining software tool) 

and MapReduce. Standard Weka tools can only run on a single 

machine, with a limitation of 1-GB memory. After algorithm 

parallelization, Weka breaks through the limitations and 

improves performance by taking the advantage of parallel 

computing to handle more than 100-GB data on MapReduce 

clusters. Ghoting et al. [21] proposed Hadoop-ML, on which 

developers can easily build task-parallel or data-parallel 

machine learning and data mining algorithms on program 

blocks under the language runtime environment. 

5.2 Big Data Semantics and Application Knowledge(Tier II) 

In privacy protection of massive data, Ye et al. [55] proposed 

a multilayer rough set model, which can accurately describe 

the granularity change produced by different levels of 

generalization and provide a theoretical foundation for 

measuring the data effectiveness criteria in the anonymization 

process, and designed a dynamic mechanism for balancing 

privacy and data utility, to solve the optimal 

generalization/refinement order for classification. A recent 

paper on confidentiality protection in Big Data [4] summarizes 

a number of methods for protecting public release data, 

including aggregation (such as kanonymity, I-diversity, etc.), 

suppression (i.e., deleting sensitive values), data swapping 

(i.e., switching values of sensitive data records to prevent 

users from matching), adding random noise, or simply 

replacing the whole original data values at a high risk of 
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disclosure with values synthetically generated from simulated 

distributions. For applications involving Big Data and 

tremendous data volumes, it is often the case that data are 

physically distributed at different locations, which means that 

users no longer physically possess the storage of their data. To 

carry out Big Data mining, having an efficient and effective 

data access mechanism is vital, especially for users who intend 

to hire a third party (such as data miners or data auditors) to 

process their data. Under such a circumstance, users’ privacy 

restrictions may include 1) no local data copies or 

downloading, 2) all analysis must be deployed based on the 

existing data storage systems without violating existing 

privacy settings, and many others. In Wang et al. [48], a 

privacy-preserving public auditing mechanism for large scale 

data storage (such as cloud computing systems) has been 

proposed. The public key-based mechanism is used to enable 

third-party auditing (TPA), so users can safely allow a third 

party to analyze their data without breaching the security 

settings or compromising the data privacy. For most Big Data 

applications, privacy concerns focus on excluding the third 

party (such as data miners) from directly accessing the original 

data. Common solutions are to rely on some privacy-

preserving approaches or encryption mechanisms to protect 

the data. A recent effort by Lorch et al. [32] indicates that 

users’ “data access patterns” can also have severe data privacy 

issues and lead to disclosures of geographically co-located 

users or users with common interests (e.g., two users searching 

for the same map locations are likely to be geographically 

colocated). In their system, namely Shround, users’ data 

access patterns from the servers are hidden by using virtual 

disks. As a result, it can support a variety of Big Data 

applications, such as microblog search and social network 

queries, without compromising the user privacy. 

5.3 Big Data Mining Algorithms (Tier III) 

To adapt to the multisource, massive, dynamic Big Data, 

researchers have expanded existing data mining methods in 

many ways, including the efficiency improvement of single-

source knowledge discovery methods [11], designing a data 

mining mechanism from a multisource perspective [50], [51], 

as well as the study of dynamic data mining methods and the 

analysis of stream data [18], [12]. The main motivation for 

discovering knowledge from massive data is improving the 

efficiency of single-source mining methods. On the basis of 

gradual improvement of computer hardware functions, 

researchers continue to explore ways to improve the efficiency 

of knowledge discovery algorithms to make them better for 

massive data. Because massive data are typically collected 

from different data sources, the knowledge discovery of the 

massive data must be performed using a multisource mining 

mechanism. As real-world data often come as a data stream or 

a characteristic flow, a well-established mechanism is needed 

to discover knowledge and master the evolution of knowledge 

in the dynamic data source. Therefore, the massive, 

heterogeneous and real-time characteristics of multisource 

data provide essential differences between single-source 

knowledge discovery and multisource data mining. Wu et al. 

[50], [51], [45] proposed and established the theory of local 

pattern analysis, which has laid a foundation for global 

knowledge discovery in multisource data mining. This theory 

provides a solution not only for the problem of full search, but 

also for finding global models that traditional mining methods 

cannot find. Local pattern analysis of data processing can 

avoid putting different data sources together to carry out 

centralized computing. Data streams are widely used in 

financial analysis, online trading, medical testing, and so on. 

Static knowledge discovery methods cannot adapt to the 

characteristics of dynamic data streams, such as continuity, 

variability, rapidity, and infinity, and can easily lead to the 

loss of useful information. Therefore, effective theoretical and 

technical frameworks are needed to support data stream 

mining [18], [57]. Knowledge evolution is a common 

phenomenon in realworld systems. For example, the 

clinician’s treatment programs will constantly adjust with the 

conditions of the patient, such as family economic status, 

health insurance, the course of treatment, treatment effects, 

and distribution of cardiovascular and other chronic 

epidemiological changes with the passage of time. In the 

knowledge discovery process, concept drifting aims to analyze 

the phenomenon of implicit target concept changes or even 

fundamental changes triggered by dynamics and context in 

data streams. According to different types of concept drifts, 

knowledge evolution can take forms of mutation drift, 

progressive drift, and data distribution drift, based on single 

features, multiple features, and streaming features [53]. 

 

VI. CONCLUSIONS 

Driven by real-world applications and key industrial 

stakeholders and initialized by national funding agencies, 

managing and mining Big Data have shown to be a 

challenging yet very compelling task. While the term Big Data 

literally concerns about data volumes, our HACE theorem 

suggests that the key characteristics of the Big Data are 1) 

huge with heterogeneous and diverse data sources, 2) 

autonomous with distributed and decentralized control, and 3) 

complex and evolving in data and knowledge associations. 

Such combined characteristics suggest that Big Data require a 

“big mind” to consolidate data for maximum values [27]. To 

explore Big Data, we have analyzed several challenges at the 

data, model, and system levels. To support Big Data mining, 

high-performance computing platforms are required, which 

impose systematic designs to unleash the full power of the Big 

Data. At the data level, the autonomous information sources 

and the variety of the data collection environments, often 

result in data with complicated conditions, such as 

missing/uncertain values. In other situations, privacy concerns, 

noise, and errors can be introduced into the data, to produce 

altered data copies. Developing a safe and sound information 

sharing protocol is a major challenge. At the model level, the 

key challenge is to generate global models by combining 

locally discovered patterns to form a unifying view. This 

requires carefully designed algorithms to analyze model 

correlations between distributed sites, and fuse decisions from 
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multiple sources to gain a best model out of the Big Data. At 

the system level, the essential challenge is that a Big Data 

mining framework needs to consider complex relationships 

between samples, models, and data sources, along with their 

evolving changes with time and other possible factors. A 

system needs to be carefully designed so that unstructured data 

can be linked through their complex relationships to form 

useful patterns, and the growth of data volumes and item 

relationships should help form legitimate patterns to predict 

the trend and future. We regard Big Data as an emerging trend 

and the need for Big Data mining is arising in all science and 

engineering domains. With Big Data technologies, we will 

hopefully be able to provide most relevant and most accurate 

social 

sensing feedback to better understand our society at realtime. 

We can further stimulate the participation of the public 

audiences in the data production circle for societal and 

economical events. The era of Big Data has arrived. 
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