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Abstract— This paper introduces a novel hybrid dimensionality reduction technique. According to the literature, Linear projection 

techniques like PCA, LDA degrades the performance of the classifiers when applied on real time data. Recent literature claims that non-

linear projection techniques like KPCA, KLDA though gives better classification accuracy than the linear projection of data but it is hard 

to find the suitable kernel function. A combination of linear and non-linear projection is used to project the data. We proposed methods 

that combine linear and non-linear projection methods in a meaningful way. Extensive studies were conducted to prove the performance 

of classifiers in the hybrid subspace. 

 

Index Terms—Linear projection, Non-linear projection, Di-mensionality reduction, PCA, LDA, ICA, CCA, NMF, KPCA, KDA, 

Autoencoders,LLE

I.INTRODUCTION 

The problem of high dimensionality has been gaining in-

creased focus in the recent literature on pattern recognition 

and machine learning. This is due to the increase in the 

availability of the high volumes of data in various fields. 

Multiple sensors are being used to extract the data and each 

sensor gives multiple features. On the other side performance 

of a classifier depends on the type of features that are used to 

represent the data. But storing the high dimensional data is a 

challenge as they occupy more space and also demands more 

computational resources. Another challenge with high 

dimensional data is in case of parametric models the more the 

number of features used for data representation the more the 

number of parameters to be estimated. Many areas of Machine 

learning depend on the extensive data analysis and data 

visualization. To address these issues many dimensionality 

reduction methods have been proposed in the literature. The 

problem of dimensionality reduction came as an answer to 

analyze and visualize the huge amounts of multi-variate data. 

Besides decreasing the dimensionality these methods typically 

improve the performance of the classification accuracy. 

Following are the advantages of dimensionality reduction: 

Reduction in the computational and storage requirements. 

Uncorrelated features in the reduced subspace improves the 

efficiency of certain parametric models like GMM.  

Dimensionality reduction makes the data visualization easy 

once it is reduced to two or three dimensions.  

Improves generalization ability of the models  

Dimensionality reduction techniques are basically catego-

rized into linear and non-linear methods depending on how 

the input data is related to the projected data. PCA, LDA, 

ICA, CCA, NMF come under linear dimensionality reduction 

techniques as the projected data is linearly related to the data 

in the input space. Techniques like KPCA, KLDA, auto 

encoders come under non-linear dimensionality reduction 

techniques as the projected data is non-linearly related to the 

data in the input space. Another way of interpreting it is linear 

dimensional reduction techniques makes use of 

transformations that can be performed on matrix. 

 

Principal component analysis (PCA) and Linear Discrimi-

nant Analysis (LDA) techniques are similar in the way data is 

linearly projected to a lower-dimensional space. The main 

difference between these two techniques is that PCA is an 

unsupervised approach as the class label information is not 

required where as LDA is a supervised approach as it uses 

class label information. In PCA the data is projected in the 

direction of the maximum variance. The dimensionality of the 

resulting subspace is bounded by the number of dimensions. 

In LDA the data is projected in the direction that maximizes 

the separability between classes. In LDA the number of 

directions the data can be projected is limited to the number of 

classes. This is the major limitation of this method as the 

number of classes are much smaller than the number of 

dimensions in general (typical number classes are in tens 

where as number of dimensions are in hundreds or even 

thousands). This method would be helpful only when the 

number of classes are sufficiently large. 

 

Objective of PCA is to maximize variance of the projected 

data or in other words minimize the reconstruction error. CCA 

(canonical correlation analysis) [2] on the other hand 

maximizes cross correlation of the projected data. Assuming 

the features are correlated to each other, CCA finds the linear 

combinations of those features that have high correlation with 

each other. 
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Non-negative matrix factorization (NMF) [11] do not make 

use of class label information and comes under the category of 

unsupervised dimensionality reduction. It is similar to PCA 

except the coefficients in the linear combination must be non-

negative. NMF has an advantage for applications involving 

large matrices as it can be solved iteratively. 

 

PCA and LDA are non-iterative algorithms and they do not 

have the problem of reaching local optima. NMF computation 

involves solving hard non-convex objective that can be solved 

iteratively and there is chance of reaching a local optima. 

 

Independent Component analysis (ICA) [Herault & Jutten, 

86] finds the components that are as independent as possible 

and doesnt work if data is Gaussian. ICA finds the direc-tions 

such that data projected onto the directions that have 

maximum statistical independence by minimizing the mutual 

information. 

 

Major challenge with linear models is that they allow linear 

projections alone which is not sufficient for the data whose 

intrinsic manifold is more complex in nature. Significant 

limitation of classical PCA is: it depends on mean, the first 

order moment and covariance, the second order moment of 

the data which is not the case in case of kernel PCA. Mul-tiple 

dimensions in the data brings more non-linearity to the data. 

The disadvantage of the linear dimensionality reduction 

techniques is that they are able to find a linear subspace alone 

which are poor representation of complex non-linear data. 

 

To represent the data in non-linear manifold, many non-

linear dimensionality reduction approaches are proposed in 

the literature. Kernel PCA (KPCA) and Kernel LDA (KLDA) 

are two non-linear methods that make use of kernel 

transforma-tions. In these methods first data is transformed to 

a nonlinear space and in that space the data is projected. 

 

Auto encoder is another non-linear dimensionality 

reduction technique that makes use of the principles of neural 

network. In this method data is given as input to the network 

and the output expected from the network is the data with 

little or no loss. The network is trained such that it gives 

minimum loss and extract the features from the linear hidden 

layer. As the features are from a hidden layer these features 

are known as bottle neck features. 

Similar to PCA, Locally linear embedding (LLE) algorithm 

does not make use of class labels and comes under the 

category of unsupervised dimensionality reduction. It takes 

the high-dimensional data as input and computes low-

dimensional data that preserves neighborhood embedings of 

the input data. As the objective of LLE is convex there is no 

chance of reaching in local minima as it is in the case of 

NMF. LLE is able to learn the global structure of nonlinear 

manifolds by exploiting the local symmetries of linear 

reconstructions [Sam T. Roweis1, Lawrence K. Saul2]. 

 

II. LINEAR DIMENSIONALITY REDUCTION 

TECHNIQUES 

 

PCA, LDA, ICA, CCA and NMF techniques are described 

in this section 

 

A.  Principal component analysis (PCA) [1] : 

 

PCA is an unsupervised dimensionality reduction technique 

that uses orthogonal projection. Data is mapped onto the 

directions of maximum variance in the data. The number of 

directions of projection(l) are called principal components. 

Usually the possible directions of projection are less than or 

equal to the number of dimensions of the data in the original 

space(d). The first direction of the projection has the 

maximum variance and the second projection is in the 

direction of second maximum variance and so on. Each of 

these directions of projections are orthogonal to each other as 

they are the eigen vectors of the covariance matrix which is a 

symmetric positive semi-definite matrix. Hence it is 

guaranteed that the resulting features are uncorrelated. 

 

Let the data D = fxng
N

n=1, each data point xn is of d 

dimensional and assume that the data is to be reduced to 

ldimensions with the constraint that l < d. The data is to be 

transformed to a new feature space a. 

 

Steps: 

 

i Find the Co-variance matrix(C) of the data D using the 

following equation  

C = N
1
 
PN

n=1(xn    )(xn    )
T
  

ii By solving the following characteristic equation we get 

the eigen vectors,  

Cvi =  ivi 

where  i is the eigenvalue corresponding to the eigen- 

vector 

v such that 

1 

  

 

::: 

 

  ; v
T
 v  =  

i T   2   d  i  
i
  

1;  and vi vj = 0;   8i 6= j        

iii Compute the projection of x as follows     

ai = (x   )
T
 v~i i = 1; 2; :::; d       

Limitations: When PCA is applied on data that has different 

scales (one variable in millions and another in hundreds) the 

projected data leads to issues. This issue can be addressed by 

normalizing the data before applying PCA. A d-dimensional 

data can be projected upto d-1 dimensions. Evaluating the 

covariance matrix in an accurate manner is a non-trivial task 
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[15]. Even the simplest invariance could not be captured by 

the PCA unless the training data explicitly provides this 

information [19]. Performance of classifier on projected data 

would be poor if the direction of separation between classes is 

not in the direction of maximum variance of the data. 

 

Extensions: Algorithms for dimensionality reduction are com-

putationally expensive and repeated computations due to ac-

cumulated data are computationally prohibitive. To address 

this issue, an out-of-sample extension scheme is proposed to 

extend to newly-arrived data points [21]. An approach called 

local linear approach [4] to dimension reduction provides 

accurate reduced representations of data. In the hierarchical 

PCA [17], a image is divided into various parts and then PCA 

is applied on each part separately and then the results are 

combined. 2DPCA [13] is based on two-dimensional matrices 

of images instead of the 1-dimensional vectors. This avoids 

the transformation of images into 1-dimensional vectors 

before extracting features. 

 

B. Fisher Discriminant Analysis(FDA) 

 

Fisher Discriminant Analysis(FDA) was proposed by 

Fisher in 1936. FDA [7] can be used for binary classification 

task in addition to dimension reduction. Unlike PCA, FDA 

requires label information for dimensionality reduction. In 

FDA the data is projected to the direction w that maximizes 

the measure of separation. 

 

Let the given data D = fxn; yng
N

n=1, where each data point xn 2 

R
d
 and yn 2 f+1; 1g. Assume that the data is to be projected to 

l dimensions with the constraint that l < d i.e. the data is to be 

transformed to a new feature space a = w
t
x. In solving FDA, 

measure of class separability, is considered as the objective 

function : 

 

J(w) = (m+   m )
2
 (1) 

 

 

 (s
2
 + s

2
 )   

     

 

where m+, m are the mean of the projected data of positive 

and negative classes respectively. s+ and s are the scatter 

matrices of projected data of the positive and negative classes 

respectively. Equation (1) can be expressed in terms of the 

data in the original space as follows: 

 

J(w) = 

w
t
SBw 

(2) 

 

w
t
SWw  

where SW represents the total within-class scatter matrix and 

SB represents the between-class scatter matrix of the data in 

the input space. 

 

We can convert the problem of maximizing J in equation 2 

into an objective function with associated conditions as 

follows: 

 

LP = 

1 

w
t
SBw + 

1 

(w
t
SWw 1) (3) 

 

    

2 2  

 

Solving the above equation tells that the directions to be 

projected are in the direction that maximizes the separation of 

means of the classes. 

 

Linear discriminant analysis (LDA) is a generalized version 

of FDA. The same can be extended to multi-class data and is 

called as Multiple discriminant analysis (MDA). LDA results 

at most M 1 directions for projections where data belongs to 

M different classes. LDA fails if the direction of separation 

between classes is not in the mean but in the direction of 

maximum variance of the data. 

 

Extensions: Other variants of LDA proposed in the lit-

erature are: Non-parametric LDA [Fukunaga, Orthonormal 

LDA [Okada and Tomita], DiscLDA [20]. Linear discriminant 

analysis (LDA) and K-means clustering are together used to 

form a method called (LDA-KM [18]) to get the features that 

are best separabble in the reduced subspace. 

 

C.  Independent Component Analysis (ICA) : 

 

ICA is a linear projection method that is proposed by 

Herault in 1991. ICA works on the assumption that data are 

linearly mixed by a group of independent sources and ungroup 

these sources based on their statistical independency measured 

by mutual information. Let v1; v2; v3; :::vd denote the projec-

tion directions of independent components. ICA finds these 

directions such that data projected onto these directions have 

maximum statistical independence by minimizing the mutual 

information or maximize the non-Gaussianity. 

 

D.  Canonical Correlation Analysis (CCA) : 

 

Now consider two feature spaces that is sets of variables x 

and y, x is a vector of u variables y is a vector of v variables. 

CCA finds a projection direction u in the space of x, and a 

projection direction v in the space of y, so that projected data 

onto u and v has max correlation. CCA simultaneously finds 

dimension reduction for two feature spaces. The objective 

function of CCA is: 
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u
T
 X

T
 Y v 

max 
p
 

u2R
p
;v2R

q
    (u

T
 X

T
 Xu)(v

T
 Y 

T
 Y v) 

 

E.  Non-Negative Matrix factorization (NMF) : 

 

NMF [11] also known as Positive Matrix Factorization, is a 

dimensionality reduction method that involves factoring the 

given data matrix into a low rank, sparse and non-negative 

factors. Let V be a non-negative matrix of dimension: n m, 

NMF algorithm decomposes the matrix V into two matrices 

W and H such that V can be approximated using W and H, i.e. 

V WH. W and H are low rank sparse and non-negative factors 

of V that have non-negative elements. W is of dimension n r, 

and is called the basis matrix because its row contains set of 

basis vectors. H is of dimension r m, and is called a weight 

matrix because its row contains coefficient sequences. The 

rank r of the factorization is chosen such that (n + m)r < nm. 

The columns of H are in one-to-one correspondence with the 

columns of V . Thus the result (WH) can be interpreted as 

weighted sum of each of the basis vectors in W , the weights 

been the corresponding columns of H. The additive properties 

resulting from the non-negative constraints of NMF results in 

basis vector that represents local components of the original 

data. 

 

 

III. NON-LINEAR DIMENSIONALITY REDUCTION 

 

TECHNIQUES 

 

Two non-linear dimensionality reduction techniques kPCA 

and Auto encoders are used to demonstrate the work in this 

paper. In kPCA first data is transformed to a nonlinear space 

and data is projected in that transformed space. 

 

A. Kernel Principal Component Analysis [6]: 

 

In PCA the projection is in the input space. In kernel PCA 

the data is transformed to a kernel space and data is projected 

in that space. The transformation from input space to the 

kernel space ('(x) space)is non-linear hence it is a non-linear 

projection in the kernel space. 

Let there are N data points in the given data, D = fxng
N

n=1, 

where each data point xn 2 R
d
. Let '(x) is the representation of 

x in the kernel space and a 2 R
l
 be the final reduced dimension 

representation, l is expected to be less than d. This 

transformation can be represented as follows: 

 

x  ! 'fxg ! a 

 

Following is the characteristic equation in '(x) space that is to 

be solved to get the principal components for projection in the 

kernel space: 

C
'
vi =  ivi (4) 

 

where C
'
 is the covariance matrix of the data in the kernel 

space. The challenge here is computing C
'
 is not possible 

when implicit kernel(Gaussian kernel) is used to transform 

data from input space to the kernel space. As we cannot 

directly compute C
'
, we solve the following characteristic 

equation which is equivalent to (4). 

 

 K i =  iN  i (5)  

Equation (2) is the 

characteristic equation in terms of the  

e   

Kernel Gram Matrix after mean subtraction (K
e
). By solving 

this equation we get the values. The l, ’s corresponding to the 

most significant eigen values are considered for projection. 

The directions for projections can be computed using the 

following equation: 

 

N 

X 

~ 

ai = inK(xi; xn)    i = 1; : : : ; l 

 

n=1 

 

The vector a gives the reduced dimension representation (ai) 

and is non-linearly related to the input space(x). 

Kernel PCA involves finding the eigenvectors of the kernel 

gram matrix,  
~
 , of size rather than finding the 

K N   N 

 

eigenvectors of the d d covariance matrix of conventional 

linear PCA. 

 

In principle K
e
 have N significant eigenvalues and hence 

the possible number of directions(l) for projection is bounded 

by N (usually N > d) instead of d as it is in case of PCA. 

Therefore there is no guarantee that the reduced dimension is 

less than d as the number of examples (N) is usually much 

much greater than the number of dimensions (d). 

 

B. Kernel Fisher Discriminant Analysis [kFDA] 

 

As KPCA is the non-linear extension to PCA, KFDA is the 

non-linear version of the LDA. To extend FDA to non-linear 

mapping, the data can be mapped to a new feature space(a) via 

some function '. 

 

a = w
t
'(x) =  w 
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The objective function of KFDA in terms of data in the kernel 

space is represented as the following maximization function: 

(m+   m )
2
 w

t
S w  

J(w) = 

    

= B (6) 

 

 2 2 

) 

 

(s  + s  wtS w  

 +    W   

where m+, m , SB, SW, s+, s corresponds to m+, m , SB, SW, s+, s 

respectively in the kernel feature space. The Fisher 

discriminant maximizes the ratio between the quantities as 

seen in equation(6). The motivation for this choice is that the 

direction chosen maximizes the separation of the means 

scaled according to the variances in that direction. The 

regularized Fisher discriminant chooses w to solve the 

following optimization problem, 

 

   (m+   m )
2
  

max J(w) = 

    

(7) 

 

2 2   

w + + + 2 kwk
2
  

Clearly, the direction of the derivative is in the direction of 

( + ). 

The directions of projection in the kernel space is given by: 

 

N 

X 

a =nK(x; xn) (8) 

n=1 

 

Here K
e
 have M solutions and hence the possible number of 

directions(l) for projection is bounded by the number of 

classes(M). If the number of classes are very few then there is 

significant loss in the information. If this is extended to 

multiple classes then it is known as generalized discriminant 

analysis (GDA) [8]. 

C. Locally linear embedding (LLE) 

 

Similar to PCA, Locally linear embedding (LLE) [9] algo-

rithm does not make use of class labels and comes under the 

category of unsupervised dimensionality reduction. It takes 

the high-dimensional data as input and computes low-

dimensional data that preserves neighborhood embedings of 

the input data. As the objective of LLE is convex there is no 

chance of reaching in local minima as it is in the case of other 

approaches. 

 

Let us assume the given data D = x1; x2:::xn contains n 

examples. Each example xi 2 R
d
. Assume that D can span the 

input space sufficiently. That is each data point and its 

neighbors are close to each other and lie on the same stripe of 

the manifold. These stripes can be reconstructed using the 

data points on its neighborhood. Error between the original 

and reconstructed can be computed using the cost function: 

 

X X  

(W ) =   (xi Wijxj)
2
 

 

i j  

 

subject to  j Wij = 1 and Wij = 0 if Xj does not belong  

to the set 

of neighbors of X   

P  i  

Sum of the squared error gives the total error in recon-

struction. The weight Wij refers to the contribution of the j
th

 

data point in reconstructing the i
t
h data point. By taking the 

derivative of the above cost function and equating that to zero 

gives the weight parameters. 

 

D. Auto encoder based dimensionality reduction 

 

Auto encoder [16] is a neural network based encoder used 

especially for dimensionality reduction. An MLFNN is trained 

with the same data given at the input and output layers that are 

linear. One of the hidden layer is a linear layer with lesser 

number of neurons than the input layer and we call this layer 

as bottle neck layer from which the features are extracted. 

 

Figure 1 shows an example architecture with a 5 layer 

MLFNN with one input, one output and 3 hidden layers. The 

first and third hidden layers are non linear and the second 

hidden layer is a linear layer which is called as bottleneck 

layer from which features are being extracted. Figure 1 shows 

the details of the architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  A sample architecture used for auto encoder 
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Extensions to non-linear methods: Building a piecewise 

linear model [3] of the data provides compression that is 

superior to the globally linear model produced by PCA 

that is superior to the global nonlinear model constructed 

by a five-layer auto associative neural network. LLE and 

Isomap tech-niques are analyzed and enhanced their 

visualization power for data scattered among multiple 

clusters [10]. LPP [12] is proposed as an alternative to 

PCA. Neighborhood preserving projections [14] (NPP) is 

proposed as a novel linear dimension reduction method 

that has good preserving property than PCA. A reduced-

dimension remapping [5] of pattern data is proposed in an 

unsupervised nonlinear manner, but with a constraint that 

the overall variance in a representation of the data be 

conserved. 

 

IV. PROPOSED APPROACH 

 

If we use KPCA alone, the number of reduced 

dimensions are bounded by number of examples, and in 

reduced space, features are uncorrelated. If we use GDA 

alone the number of reduced dimensions are bounded by 

number of classes, and after reduction the features are 

discriminative. We can combine these two feature 

reduction techniques to make the resultant features both 

discriminative and uncorrelated. this can be done in either 

of the following ways but the later approach is not that 

meaningful. 

 

i KPCA followed by GDA: If we apply KPCA 

followed by GDA the resultant dimensions are 

bounded by num-ber of examples in the data set, 

and are uncorrelated. Hence applying GDA after 

KPCA is meaningful only  

when the number of classes are large enough. 

 

ii GDA followed by KPCA : This is not much mean-

ingful as after applying GDA the resultant 

dimensions are bounded by number of 

classes(usually number of classes are very small 

compared to number of dimen-sions). Applying 

KPCA after GDA would not be much meaningful.  

 

V. CONCLUSION 

 

Based on this survey we can conclude that dimension 

reduction not only provides better visualization of the data 

but also helps in improving the performance of the 

machine learning algorithms. Linear dimensional 

reduction techniques are simple and elegant as long as the 

data is not in the non-linear manifold. PCA,LDA and 

CCA are trivial optimization problems where as NMF and 

ICA are non-convex optimization problems and are 

possible to reach in a local minima. Non-Linear 

dimensional reduction techniques are much complex and 

gives better representation of the data in a non-linear 

subspace. In case of KPCA and KLDA choosing proper 

kernel is an issue and in case of auto encoders choosing 

the structure of the network is a challenge. As today’s real 

world data is much complex it is wise to use non-linear 

methods for dimensionality reduction and can also be 

combined as proposed in the previous section. 
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