
International Conference on Innovative Applications in Engineering and Information Technology(ICIAEIT-2017)

International Journal of Advanced Scientific Technologies ,Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.3,Special Issue.1,March.2017

www.ijastems.org Page 277

ENHANCING PERFORMANCE FOR DATA

WARE WAREHOUSE STAGING AREA
Dr.M.SREEDEVI, ASSISTANT PROFESSOR, DEPT.OF.COMPUTER SCIENCE,S.V.UNIERSITY,TIRUPATI

Abstract -- Reduction in the performance can turn a successful data warehousing project into a failure. Many attempts have been made by

various researchers to deal with the problem of scheduling the Extract Transform-Load (ETL) process. This paper therefore deals with the

different in the context of improving the data warehousing in transform stage. We focus on improving the performance of transform phase

next to the analysis stage. We focus on the problem of scheduling the execution of the transform activities, with the goal of reducing the

execution time. We represent here three scheduling techniques for improving the performance of the data warehousing projects.

KEYWORDS -- Data Warehouse, ETL, Scheduling techniques, ETL optimization

I. INTRODUCTION

Lately data warehousing (DW) has gained a lot of attention

from both the industry and research communities. From the

industrial perspective, building an information system for

the huge data volumes in any industry requires lots of

resources as time and money. Unless those resources add to

the industry value, such systems are worthless. Thus, people

require that information systems should be capable to

provide extremely fast responses to different queries

specially those queries that affect decision making. From the

research perspective, researchers find that due to the

increasing need and value of for efficient data warehouses, it

is still a fruitful research direction where further

improvements can be added., further investigation in data

warehouses performance and techniques are still needed and

present fruitful research directions.

In this direction, we are mentioning that a simple low-cost

shared-nothing architecture with horizontally fully-

partitioned facts can be used to speedup response time of the

data warehouse significantly and they concluded after

experiments that, although it is not possible to guarantee

linear speedup for all query patterns, workload-friendly

placement can prevent very low speedup

and provide near to linear speedup for most queries in Node

Partitioned Data Warehouses. Our goal is to continue the

effort towards an enhanced data warehousing performance

through its final phase "loading". We are motivated by the

fact that in real life important information that is delivered

late results in making inaccurate decisions. In this context,

we explore three scheduling techniques (First-In-First-Out

(FIFO), Minimum Cost, and Round Robin (RR) based on

time and records) for scheduling the ETL process. We

experimentally show their behavior in terms of execution

time with our sales data and discuss the impact of their

implementation.

II. SCHEDULING ALGORITHMS

Following the approaches proposed to optimize the ETL

process, and more specifically the "load" phase of this stage,

we decided to focus on 3 scheduling techniques where each

represents a different perspective of data processing. They

are "First-in-First-Out"(FIFO), Minimum Cost (MC), and

Round Robin (RR). We will first introduce each one of them

and then explain how they were mapped on our data. Those

techniques were used at different stages and in the following

section we will show the what-if scenarios results on our test

data.

2.1 FIRST IN FIRST OUT

First In First Out (FIFO) is one of the very primitive

algorithms that simply takes the data as soon as it comes and

transfers it to the destination regardless of any priorities.

The input to the algorithm is simply all tables required for

the DW, and the output is their successful transfer. Our

implemented algorithm proceeds as follow: First, all queries

of those tables (Tnq) are added to osne list (AL.FIFO.Tnq)

where each query represents the selection of all columns of

the table(T), then all tables names (Tn) are added to the

same list. For each query in the list "AL.FIFO.Tnq" a

connection to the Database holding the table was created

and then we started measuring the difference between the

start time (S.T) and end time (E.T) for processing the query

"Table Total Execution Time" (ET). At the end we added all

those ET together to have the total time Ttot to load all data

using FIFO technique over different stages.

International Conference on Innovative Applications in Engineering and Information Technology(ICIAEIT-2017)

International Journal of Advanced Scientific Technologies ,Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.3,Special Issue.1,March.2017

www.ijastems.org Page 278

Algorithm 1: FIFO

Input: Database Tables at source or after Extraction

or Transformation Phase

Output: Data loaded to DW without waiting if queue

is idle

for (each Tnq) do

/* add Tnq to AL.FIFO.Tnq */ end

for each T do

/* add Tn to AL.FIFO.Tnq */ end

for each AL.FIFO.Tnq do

/* create connection to the Database holding the table

*/

S.T= System.nanoTime ();

/* the above formula represents the Start time of

processing a Query */

/* Process Query */

E.T= System.nanoTime ();

/* the above formula represents the end time of

processing a Query */

ET= E.T - S.T;

/* calculate the total execution time of Table to be

loaded to the DW */

Ttot += ET;

 /* total time to transfer all tables */

 Return Ttot

End

2.2 MINIMUM COST

The Minimum Cost (MC) scheduling is the second proposed

algorithm to reduce the time needed for the execution of the

loading phase. Similar to the FIFO algorithm, MC takes as

input the data from any stage of Extract/Transform or at

sources and as output the successful transfer of data but

based on those with maximum volume first. Initially, after

we specify the list of Tables (T) required we add all their

names (Tn) to a list (AL.Tn). Afterwards, we process each

table to retrieve its size (Ts) to add it beside (Tn) and its

query (Tnq) to one list (AL.MC.Tnqs). Then, we take this

list and re-sort it in a descending order (AL.MC.Tnqs.Desc)

based on the size. Finally, once the list is ready, we create

another connection to each table in this list and start

measuring the difference between its start time (S.T) and its

end time (E.T) to get our total table execution time ET and

their summation leads us to the total time Ttot needed for

MC algorithm to finish its job.

2.3 ROUND ROBIN

Our third technique is Round Robin (RR) which we

implemented in two version rather than the traditional one to

analyze their behaviors. So, instead of implementing the

traditional Round Robin based on assigning time slices in

equal portions for every table. We also implemented

another version based on fixed threshold number

of records to get a new perspective about what if

having to wait for processing a complete set of

records regardless of their size as the rotation

factor.
2.3.1 TIME BASED ROUND ROBIN (TRR)

In the first version of RR we started with setting rotations

based on time, thus as the pervious algorithms the input is

the data from any stage of Extract/Transform or at sources

along with the time slice. The algorithm starts by creating

connections to all tables to be loaded and at the same time

setting their status initially to false (i.e. idle status) until they

get processed. Thus, when the table status (S) changes to

True we will set the current time (C.T) value to be the start

time (S.T) of the table .Then we check if the table was fully

processed or not by comparing an incremental count of table

records (C.Tr) with its total size (Ts). If there is still

unprocessed records we check if this table was partially

processed before to avoid miss-capturing of table actual start

time by verifying the status of the indicator (ind) assigned to

this table which initially is set to 0 (i.e. table was never

processed). Afterwards, as long as rotation turn isn’t reached

(C.T is less than sum of S.T and TRR) and the table is not

fully processed (C.Tr is not equal to Ts), we will process the

records using the table query (Tnq) while adjusting table

C.T value. Once the table gets fully processed we capture

the table end time (E.T) and calculate the difference to get

the total table execution time (ET).At the end we add all

those (ET) together to have the total time Ttot to load the

tables.

Algorithm 2: MC

Input: Database Tables at source or after Extraction or

Transformation Phase Output: Data loaded to

datawarehouse by maximum size first

for (each AL.Tn) do

/* create connection to the Database holding the current

table in the list */ /* Retrieve table size Ts */

/* add Tn,Tnq and Ts to AL.MC.Tnqs */ end

for (each AL.MC.Tnqs) do

/* Re-Order AL.MC.Tnqs by maximum size and then

add to AL.MC.Tnqs.Desc */ fnd

For (each T ∈ AL.MC.Tnqs.Desc) do

/* create connection to the database holding the table

/S.T= System.nanoTime (); / the above formula

represents the start time of processing a query */

/* Process Query */

E.T= System.nanoTime ();

/* the above formula represents the end time of

processing a query */ ET= E.T - S.T;

/* calculate the total execution time of Table to be loaded

to the DW */ Ttot+=ET;

International Conference on Innovative Applications in Engineering and Information Technology(ICIAEIT-2017)

International Journal of Advanced Scientific Technologies ,Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.3,Special Issue.1,March.2017

www.ijastems.org Page 279

/* total time to transfer all tables */ return Ttot

End

Algorithm 3: Time Based Round Robin

Input: Database Tables at source or after Extraction

or Transformation Phase beside specifying the

Round Robin Time Limit

Output: Data loaded to datawarehouse based on

time rotations

 /* create connections to all tables to be loaded */

/* Set the status of all Tables.Processed to

"False"*/

 /* set all tables indicators to 0 */

while (S != True) do

/* set C.T to current system time */

 /* set S.T to current system time */

 if (C.Tr != Ts) then

if (ind==0) then S.T=System.NanoTime();

 /* indicator is set to 1 */

 end

while (C.T < (S.T + TRR)) and (C.Tr != Ts) do

/* process table query (Tnq) till TRR is reached */

/* set C.T to current system time */

end

end

if (C.Tr == Ts) then E.T=System.NanoTime();

 ET= E.T - S.T

/* set S to true */

end

End

/* add the summation of all Tables ET to get Ttot*/

2.3.2 RECORD LIMIT BASED ROUND ROBIN

So as with prior techniques we take as input the data coming

from any stage of Extract/Transform or at sources along

with the Round Robin records limit (LRR) for rotation.

First, we create a connection to all the tables to be

transferred then as long as we didn’t finish processing all the

data we set our Round Robin status (S) to false then we start

capturing the start time (S.T) of processing a table and

change its status to true (T). While the Round Robin Limit

(LRR) is not reached and we haven’t finished processing the

whole table size (Ts), the query referring to all table’s data

(Tnq) get executed. Then, when we finish loading all the

table we capture its end time (E.T) then calculate the table

total execution time (ET) and add it to a list of all tables total

execution time (Al.ET). Finally when all tables are loaded

we adjust our algorithm end round robin status (S) to "True"

and from (AL.ET) we get our Total Time (Ttot) of Round

Robin based on records limit technique.

Algorithm 4: Records Limit Round Robin

Input: same as with previous algorithms beside

specifying the Round Robin Records Limit

Output: Data loaded to datawarehouse based on record

limit.

 /* create connections to all tables to be loaded */

while (S == False) do if (T ==notIdle) then

S.T=System.NanoTime();

 /* set T active */

end

while (LRR isReached = False and Ts isReached =

False) do

 /* process table query (Tnq) till LRR is reached */

if (Ts isReached = True) then

E.T=System.NanoTime() ET= E.T - S.T

/* add ET to Al:ET */

 end

end

if (all Ts isReached = True) then

/* set S to True since all tables have been processed */

end

End

/* add the summation of all Al.ET to get Ttot */

III. SCHEDULING EXPERIMENTS

In this section, we discuss the experimental results of our

proposed algorithms. The used data was from

AdventureWorks Database

[http://msftdbprodsamples.codeplex.com/] to simulate the

loading phase to a sales DW. Our objective is to evaluate

data transfer using different techniques (FIFO, MC, RR time

and record rotation). The data included in our test is coming

from data at their sources after extraction and transform

phases as we wanted to capture the time needed to transfer

data from each stage and which technique is the most

suitable in case there is a decision required. For choosing

FIFO, FIFO turns to be a typical solution if we went random

with just a simple knowledge about the data in hand which

sometime might be the case with the need for fast response

for critical inquiries. As for MC, this one targets large data

sets first which requires having sufficient memory

allocation. For the Round Robin, we tried to look not only at

the traditional time rotation but also what if we used

specified number of records as our limit.

All experiments have been conducted on a Core i7

International Conference on Innovative Applications in Engineering and Information Technology(ICIAEIT-2017)

International Journal of Advanced Scientific Technologies ,Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.3,Special Issue.1,March.2017

www.ijastems.org Page 280

with 2.5 GHz and 16 GB main memory. As for the

Database size over different stages: 14 GB for data at

sources, 6.3 GB at extract and 6.89 GB at Transform. From

those experiments, we noticed as shown in figure 4.a and

4.b that when comparing all scheduling techniques that

FIFO has slightly better performance than MC followed by

Time Based Round Robin, while Record Limit Based

Round Robin behaves the worst. However, when

increasing the record limit as shown in figure 5.a and

figure 5.b, the performance improves which can be taken

into consideration for scenarios where there is a need to

quickly load part of the data set into a data mart. On the

other hand, after testing several Time Based Round Robin

as shown in figure 6.a and 6.b, we concluded that it

behaves best with smaller data set (as with Extracted Data

Set).

Figure 4.a Scheduling Techniques by Minutes for Data

Loaded at Different Stages

 Figure 4.b Scheduling Techniques Statistics by

 Minutes for Data Loaded at Different Stages

Figure 5.a Records Limit Based Round Robin for Data

 Loaded at Different Stages

Figure 5.b Records Limit Based Round Robin

 Statistics for Data Loaded at Different Stages

Figure 6.a Time Based Round Robin for Data

 Loaded at Different Stages

International Conference on Innovative Applications in Engineering and Information Technology(ICIAEIT-2017)

International Journal of Advanced Scientific Technologies ,Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.3,Special Issue.1,March.2017

www.ijastems.org Page 281

Time

Based

Round

Robin

Data Source

DB
Extracted

DB
Transformed

DB

15 sec

0.423583402

0.77385139

0.512963346

30 sec 0.432563809 0.332146974 0.369322797

45 sec 0.421170103 0.382187158 0.338832748

1 min 0.435068669 0.33775838 0.333256225

Figure 6.b Time Based Round Robin Statistics for

 Data Loaded at Different Stages

IV. CONCLUSION AND FUTURE WORK

In a typical DW environment, data is extracted periodically

from the applications that support business processes and

copied to special dedicated machines. There it can be

validated, reformatted, reorganized, summarized,

restructured, and supplemented with data from other sources

which will lead to having a DW acting as the main source of

information for future analysis, report generation, and

presentation through ad-hoc reports, portals, and

dashboards. In this paper, we introduced a new approach to

enhance performance using semantics for Extraction and

Transformation which reside in the staging area just before

the final loading phase. We proposed a semantics-based

algorithm for each phase and presented the statistical results

of applying those algorithms on the "Sales" schema. The

data profiling tool results show that incorporating

semantics in the staging area has an obvious

impact on the quality of the resulting data that is

presented to the loading phase. We also think that

the ontology’s presented in this work are tailored

for the sales case study; however, different

businesses imply different ontology’s that need to

be considered. As for loading data continuous attempts to

select the best and most convenient approach to data

transfer will vary depending on the data in hand as well as

available resources such as CPU and main memory beside

the urgency factor. In this work we tried to analyze and

evaluate different scheduling techniques namely, FIFO

(Random), MC (Maximum Size First), RR (based on time),

and finally a new approach for RR which that is based on

rotating on fixed number of records regardless of their size.

For future work, we would like to consider Minimum

Memory (MM) and other algorithms. In addition

implementing those algorithms in a distributed environment

is also a possible direction for future work.

REFERENCES

[1] El-Gamal, N.: Data warehouse conceptual modeling

approaches. In: Proceedings of the 37th International

Conference on Computers and Industrial Engineering,

Alexandria, Egypt (October 2007) 231-242

[2] Inmon, W.H.: Building the data warehouse. Wiley

Publishing,Inc., Wellesley, MA,USA (1992)

[3] Server, M.S.: Data profiling task and viewer.

http://technet.microsoft.com/en-us/library/bb895310.aspx

(2013)

[4] Knight, B., Veerman, E., Dickinson, G., Hinson, D., Herbold,

D.: Professional Microsoft SQL Server 2008 Integration

Services. Wiley Publishing, Inc. (2008)

[5] Bateni, Mohammad Hossein and Golab, Lukasz and

Hajiaghayi, Mohammad Taghi and Karloff, Howard.

Scheduling to Minimize Staleness and Stretch in Real-time

Data Warehouses. In Proceedings of the twenty-first Annual

Symposium on Parallelism in Algorithms and Architectures,

2009.

[6] Furtado P. Experimental Evidence on Partitioning in Parallel

Data Warehouses. In Proceedings of the 7th ACM

International Workshop on Data Warehousing and Olap,

2004.

[7] Simitsis, A., Vassiliadis, P., Sellis, T.: Optimizing etl

processes in data warehouses.In: Data Engineering, 2005.

ICDE 2005. Proceedings. 21st International Conference on.

(2005) 564-575.

[8] Ladjel, B., Michel, S., Herv, L., Mukesh, M.: Bringing

together partitioning, materialized views and indexes to

optimize performance of relational data warehouses.In

Kambayashi, Y., Mohania, M., W, W., eds.: Data

Warehousing and Knowledge Discovery. Volume 3181 of

Lecture Notes in Computer Science. Springer Berlin

Heidelberg (2004) 15-25.

[9] Thi, A.D.H., Nguyen, B.T.: A semantic approach towards

cwm-based etl processes.In: Proceedings of I-SEMANTICS

08, Graz, Austria (September 2008) 58-66.

[10] Skoutas, D., Simitsis, A., Sellis, T.: Journal on data semantics

xiii. Springer-Verlag, Berlin, Heidelberg (2009) 120-146.

[11] Skoutas, D., Simitsis, A.: Ontology-based conceptual design

of etl processes for both structured and semi-structured data.

International Journal on Semantic Web and Information

Systems (IJSWIS) 3(4) (2007) 1-24.

[12] Santos, Ricardo Jorge and Bernardino, Jorge. Optimizing

Data Warehouse Loading Procedures for Enabling Useful-

time Data Warehousing. In Proceedings of the 2009

International Database Engineering and Applications

Symposium, 2009.

[13] Thiele, Maik and Bader, Andreas and Lehner, Wolfgang.

Multi-Objective Scheduling for Real-Time Data Warehouses.

In Business, Technologie Und Web (BTW), 2009.

[14] Thomas Jorg and Stefan Dessloch. Formalizing ETL Jobs for

Incremental Loading of Data Warehouses. In

Datenbanksysteme in Business, Technologie Und Web

(BTW), 13.Münster, Germany, 2009.

[15] Fenk, Robert and Kawakami, Akihiko and Markl, Volker and

Bayer, Rudolf and Osaki, Shunji. Bulk Loading a Data

Warehouse Built Upon a UB-Tree. In Proceedings of the

2000 International Symposium on Database Engineering and

International Conference on Innovative Applications in Engineering and Information Technology(ICIAEIT-2017)

International Journal of Advanced Scientific Technologies ,Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.3,Special Issue.1,March.2017

www.ijastems.org Page 282

Applications, 2000.

[16] Mallikharjuna Reddy V and Sanjay K. Jena. Active

Datawarehouse Loading by Tool Based ETL Procedure. In

Proceedings of the 2010 International Conference on

Information and Knowledge Engineering, july 12-15, Las

Vegas Nevada, USA, 2010.

[17] Costa, Marco and Madeira, Henrique. Handling Big

Dimensions in Distributed Data Warehouses Using the DWS

Technique. In Proceedings of the 7th ACM International

Workshop on Data Warehousing and Olap, 2004.

[18] Anastasios Karagiannis, Panos Vassiliadis, Alkis Simitsis.

Macro Level Scheduling of ETL Workflows. In 9th

International Workshop on Quality in Databases (QDB 2011),

in Conjunction with VLDB, 2011.

Author:

 Dr.M.Sreedevi,

 Assistant Professor,

 Dept.of.Computer Science

 S.V.University,

 Tirupati – 517 502

 Andhra Pradesh,

 India .

Mail-ID: msreedevi_svu2007@yahoo.com

