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Abstract— The problem of high dimensionality has become a great challenge in machine learning community. This problem is 

gaining much focus due to the increase in the volume of data availability. The challenges related to high-dimensional data is more 

severe in case of generative models like Gaussian Mixture models (GMMs), as there is high correlation between the number of 

parameters to be estimated and the number of features used to represent the data. In parametric models like GMM the higher the 

number of dimensions the higher the number of parameters to be estimated. To attain reasonable accuracy large number of 

examples are required which is usually ten times the number of parameters but availability of large training data may not be 

possible in most of the real-time applications. So it is important to represent the high-dimensional data in a reduced dimensional 

space to design a more robust classifier. Dimensionality reduction of data helps for discriminative models like support vector 

machines, as the computational complexity required is less compared to the high dimensional data. There are two different types of 

projections that are popular in literature to reduce the data dimensionality: Linear projection and Non-linear projection. In both 

these methods data is projected onto the lower dimensions. In this work we carried out multiple studies on linear and non-linear 

projection of data before feeding the data to a model for classification. Our experimental studies show non-linearly projected data is 

better classified than linearly projected data. For our experimental studies and illustrations we use both synthetic and real-time, 

Brain Computer Interface data. 

Index Terms— Principal Component Analysis (PCA), Linear Projection of data, PCA in Kernel space (KPCA), Non-linear 

projection, Multi-modal GMMs (Gaussian Mixture Models). 

 

I.  INTRODUCTION 

In the area of machine learning and pattern 

recognition, dimensionality reduction is a technique of 

reducing the number of features with which the data is 

being represented. In simple words it is the process of 

projecting the data from it’s input space (usually higher 

dimensional) to a lower dimensional space. Usually less 

number of features are used to represent the data in the 

reduced space as compared to the dimensions in the 

original space. The type of projection can be either linear 

or non-linear. 

Two prominent linear projection techniques for 

feature reduction in the literature are: Principal 

Component Analysis (PCA), and Linear Dimensionality 

reduction (LDA). In Both these approaches the data is 

linearly projected to a lower-dimensional space. Major 

difference between PCA and LDA is: in PCA label 

information is not required where as in LDA label 

information is used, while computing the directions for 

projection. Therefore PCA is an unsupervised approach 

and LDA is a supervised approach. In PCA the data is 

projected in the direction of the maximum variance of the 

data. The dimensionality of the resulting subspace is 

bounded by the number of dimensions. In LDA the data is 

projected in the direction that maximizes the separability 

between classes. In LDA the number of directions the data 

can be projected is limited to the number of classes. This 

is the major limitation of this method as the number of 

classes(C) in general is very few compared to the number 

of dimensions (d). LDA method would be helpful only 

when the number of classes is sufficiently large. 

There are many non-linear dimensionality reduction 

approaches proposed in the literature: PCA in the kernel 

space (KPCA) and LDA in Kernel space (KLDA).  These 

two are non-linear methods that make use of kernel 

transformations. In these methods first data is transformed 

to a nonlinear space and in that space the data is projected. 

Another non-linear dimensionality reduction technique is 

neural network based auto encoders. In this method data is 

given as input to the network and the output expected 

from the network is the data. We train the network such 

that it gives minimum loss and extract the features from 

the linear hidden layer. As the features are from a hidden 

layer these features are known are bottle neck features. 

Following are the advantages of dimensionality reduction: 

 Reduction in the computational and storage 

requirements. 

 Uncorrelated features in the reduced subspace 

improve the efficiency of certain machine 

learning models like GMM. 

Dimensionality reduction makes the data visualization 

easy once it is reduced to two or three dimensions.  

II. LINEAR  DIMENSIONALITY REDUCTION 

Two prominent linear projection techniques for feature 

reduction in the literature are: Principal Component 

Analysis (PCA), and Linear Discriminant Analysis  

(LDA).  

 

A. Principal Component Analysis: 

It is an unsupervised dimensionality reduction 
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technique that uses orthogonal projection. In this approach 

directions of maximum variance of the data are computed 

and data is projected onto those directions. The number of 

directions of projection (l) is called principal components. 

Usually the possible number of directions for projection is 

at most equal to the number of dimensions of the data in 

the original space(d). The first direction of the projection 

has the maximum variance and the second projection is in 

the direction of second maximum variance and so on.  

Each of these directions of projections are orthogonal to 

each other as they are the eigen vectors of the covariance 

matrix which is a symmetric positive semi-definite matrix. 

So it is guaranteed that the resulting features are 

uncorrelated. 

Let the data D =  N

nnx 1
    

each data point nx is of d 

dimensional and assume that the data is to be reduced to l 
dimensions with the constraint that l < d. The data is to be 
transformed to a new feature space a. 

 
Steps: 

1. Find the Co-variance matrix(C) of the data D using 

the following equation 

C =  

T

n

N

n x
N

)(
1

1   

 
2. By solving the following characteristic equation we 

get the eigen vectors,  
 

C ii vv   

Where i  is the eigen value associated with the 
eigenvector iv such that  

;..... 121 d    
Where the eigen vectors are orthogonal to each other and 

uncorrelated to each other. 
3. Compute the projection of x as fallows 

 
i

T

i vxa )(          i=1,2,…..,d 
 
 

B. Fisher Linear Discriminant Analysis: 

 
FLDA is a linear projection technique that makes use of 
class labels and comes under the category of supervised 
learning.  In FDA the data is projected in the directions 
maximum separability. PCA on the other hand  does not 
take into account of discriminant information. FDA 
requires label information for dimensionality reduction. In 
FDA the data is projected to the direction w that 
maximizes the measure of separation. 

Let the given data D =   ,,
1

N

nnn yx


 where each data point 

d
n Rx  and  1,1ny . Assume that the data is to 

be projected to l dimensions with the constraint that l < d 
i.e. the data is to be transformed to a new feature space 

xwa
t

 . 
In solving FDA, measure of class separability, is 
considered as the objective function: 
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where m+, m are the mean of the projected data of positive 
and negative classes respectively. s+ and s are the scatter 
matrices projected data of the positive and negative 
classes respectively. Equation (1) can be expressed as 
follows:  

wsw

wsw
wJ

W

t

B

t

)(

                    -------------        (2)

 

In the above equation Sw denotes the total within-class 
scatter matrix and SB denotes the between class scatter 
matrix of the data in the input space. 
The above maximizing problem can be posed as a 
constrained optimization problem and the lagrangian  of 
the optimization problem is: 
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III. NON LINEAR DIMENSIONALITY REDUCTION 

 

A. PCA in the kernel space: 

In linear projection (PCA), the projection is in the input 

space.  In kernel PCA the data is transformed to a kernel 

space and data is projected in that transformed space. The 

transformation from input space to the kernel space 

)(( x  space)is non-linear hence it is a non-linear 

projection in the kernel space. 
Let there are N data points in the given data, D = 

 N

nx 1 , where each data point 
d

n Rx   X R
d
. Let )(x  

is the data point x represented in the kernel space and 
lRa  the data point x represented in the kernel space, 

usually l is expected to be less than d. 

  axx   

Following is the characteristic equation in '(x) space that 
is to be solved to get the principal components for 
projection in the kernel space: 

ii
iC



  
      -------      4 

In the above characteristic equation,  C


 is the covariance 
matrix of the data in kernel space. The challenge here is 

computing C


. It is always not possible to compute 

C


especially when an implicit kernel (Gaussian kernel) is 
used to transform data from input space to the kernel 

space. As we cannot directly compute C


, we solve the 
following characteristic equation which is equivalent to 
(4). 

                iii NK              --------------  (5) 

Equation (5) is the characteristic equation in terms of 
the Kernel Gram Matrix after mean subtraction (K

e
). By 

solving this equation we get the values. The l, 's 
corresponding to the most significant eigen values are 
considered for projection. 
The directions for projections can be computed using the 
following equation: 
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The vector a gives the reduced dimension representation 
(ai) of the data point (xi). This projection is non-linear as 
the kernel used to transform data is a non-linear kernel. 
Once the data is transformed to a non-linear space, it is 
projected in that kernel space. The input data is non-
linearly related to the projected data, So the projection is 
said to be non-linear. Kernel PCA involves finding the 
eigenvectors of the kernel gram matrix, K, of size NXN 
rather than finding the eigenvectors of the d covariance 
matrix of conventional linear PCA. 

In principle K  have N significant eigen values and 

hence the possible number of directions (l) for projection 

is bounded by N (usually N > d). Therefore there is no 

guarantee that the reduced dimension is less than d. 

 

B. LDA in kernel space: 

As KPCA is the non-linear extension to PCA, KFDA is 
the non-linear version of the LDA. To extend FDA to 
non-linear mapping, the data can be mapped to a new 

feature space(a) via some function  . 

                 w

t

xwa   )(
                                       

 

The objective function of KFDA in terms of data in the 
kernel space is represented as the following maximization 
function: 
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where 

 ssSSm B ,,,, corresponds to m+, m , SB, SW, 

s+, s respectively in the kernel feature space. 
The Fisher discriminant maximizes the ratio between the 

quantities as seen in equation(6). The motivation for this 

choice is that the direction chosen maximizes the 

separation of the means scaled according to the variances 

in that direction. 

The regularized Fisher discriminant chooses w to solve 
the following optimization problem, 
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               (7) 
Clearly, the direction of the derivative is in the direction 

of ( + ). The directions of  projection in the kernel space is 
given by: 

                (8) 
Here K

e
 have M 

solutions and hence the 
possible number of directions (l) for projection is bounded 
by the number of classes(M). If the number of classes is 
very few then there is significant loss in the information. 

IV.  EXPERIMENTAL RESULTS 

A In this section we provide experimental results to show 

that non-linear dimensionality reduction outperforms 

linear dimensionality reduction. We carried out 

experiments using one artificial dataset and one real world 

image dataset. We use PCA and KPCA to demonstrate all 

our experiments. 

 

A. Artificial data  

In this section, we show that non-linear projection helps to 

transform the complex decision boundary of the data in 

the original space to a linear decision boundary in the 

reduced subspace. As we can have the visualization of the 

data in lower dimensional space like 2D and 3D we first 

describe the experiments with a 2D artificial dataset. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig 1: Data in the input space and Data projected to 1D 

On seeing the data in Figure 1(a), one can observe 

that the data is non-linearly separable and the decision 

boundary is a complex non-linear boundary and is 

expected to be in the centre of the two classes. A linear 

classifier cannot be used to classify such data. 

First we projected the data using conventional PCA 

that performs a linear projection in the input space and the 

same is shown in Figure 1(b). One can see that there is no 

clue to classify the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: KPCA based non-linear projection in reduced 

subspace  

In such cases linear dimension reduction techniques fail. 

In Figure 2 we show the projected data in 1D space after 

applying KPCA based non-linear dimensionality 

reduction. Now we can see that the data is linearly 

separable in the reduced subspace. To classify such data 

we can use any simple classifier such as naive Bayes, as 

the classes are linearly separable. 
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Kernel transformation: We tried different types of kernels 
to transform the data and our experiments show that 
Gaussian kernel is sufficient to transform the data such 
that the classes are linearly separable. Gaussian kernel, 
also known as RBF kernel, on two samples xm and xn, 
represented as feature vectors in some input space, is 
defined as: 

22exp),( 

IIxxII

nm

nm

xxk



  

For our experiments we set   =0.28. 

Projecting onto higher dimensional space: As 

mentioned in the previous section the possible number of 

directions to be projected is number of examples (N). 

Hence we can project to more than the number of 

dimensions in the input space. Figure 3 shows the 

projection of the 2D data to 2D and 3D space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Projection to high-dimensional space 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Non-linearly separable data in original space 

Projection onto higher dimensions helps when the data is 

not separable in the lower dimensions. Consider the data 

given in Figure4 which is not separable even after 

projecting to 2D and 3D. It might become separable in the 

higher dimensions. 

 

4.2 Real data  
In this section, we use a real world image dataset to show 

that non-linear projection helps to improve classification 
accuracy. To illustrate the experimental studies, we use 
Support Vector Machine (SVM) based classifier. 

 

 

 

 

 

 

                      

 

 

 

 

 

 

 

Figure 5: Non-linearly projection of spiral data onto 2D 

and 3D 

 

 

 

 

Table 1: Summary of the dataset used for experimental 

results 

Description of the dataset: This data set created from 

research toward the development of a brain computer 

interface (BCI). The data is collected from a single 

person. That person underwent 400 different trials. In each 

trial, he imagined movements of the hand writing (both 

left and right). His imaginations are captured using 39 

different electrodes and each electrode gives 3 parameters, 

which leads to a total of 117 parameters for each trial.  

 

Classifiers: To illustrate the experimental studies, 

Gaussian Mixture Model (GMM) based classifier is used. 

The reason for selecting GMM based classifier is the size 

of dimensionality has a direct impact on the accuracy of 

classifier. In case of GMM based classification, if the 

number of dimensions of the data increases the number of 

parameters to be estimated is large and if the number of 

dimensions of the data is small the number of parameters 

to be estimated are also small. In GMM based 

classification the number of parameters also depends on 

the type of covariance matrix used. If the covariance 

matrix is diagonal then the number of parameters to be 

estimated is linearly proportional to the dimensionality of 

the data. If the covariance matrix is non-diagonal or full 

then the number of parameters to be estimated is in 

quadratic relation to the dimensionality of the data. 

 

Table 2 shows the performance of linear and non-linear 

projections on BCI dataset. 

Dataset Classes Features Samples 

BCI 2 117 400 

GMM PCA-GMM KPCA-GMM 

53.75 (117-d) 47.50 (10-d) 53.75 (10-d) 

53.75 (117-d) 47.50 (3-d) 50.00 (3-d) 

53.75 (117-d) 45.00 (1-d) 48.75 (1-d) 
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The results are compared to the GMM based classifier 

without any dimensionality reduction. Three mixture 

components used for these experiments. Along with the 

accuracy the number inside () represent the size of the 

dimensionality of the data. 

GMM KPCA-GMM 

53.75 (117-d) 53.75 (10-d) 

53.75 (117-d) 56.25 (20-d) 

53.75 (117-d) 57.50 (30-d) 

53.75 (117-d) 57.50 (40-d) 

53.75 (117-d) 56.25 (50-d) 

53.75 (117-d) 56.25 (60-d) 

53.75 (117-d) 55.00 (70-d) 

53.75 (117-d) 55.00 (80-d) 

53.75 (117-d) 52.50 (90-d) 

53.75 (117-d) 53.75 (100-d) 

Table 3: Classification Accuracy before and after 

dimensionality reduction 

Following experiment shows the classification accuracies 

of the data after reducing the data onto different number 

of directions. 

Gaussian 

components 

GMM KPCA-GMM 

1 55.00 (117-d) 56.25 (10-d) 

2 55.00 (117-d) 51.25 (10-d) 

3 53.75 (117-d) 53.75 (10-d) 

4 40.25 (117-d) 43.75 (10-d) 

5 38.75 (117-d) 47.50 (10-d) 

Table 4: Classification Accuracies before and after 

dimensionality reduction 

Based on Table 4 we can see that as the number of 

components increase accuracy using GMM in the original 

space decrease as the number of parameters to be 

estimated are large. But in case of reduced space GMM 

performance increases as more number of components can 

better represent the data and number of parameters to be 

estimated is not too large as d is fixed to 10. 

Based on the above experiments we can conclude that 

non-linear projection is better than linear projection in 

terms of classification accuracy. In generative models like 

Gaussian Mixture models (GMMs) high dimensional data 

brings severe problems as the number of parameters to be 

estimated is proportional to the dimensionality of the data. 

By reducing the number of dimensions using non-linear 

projection, the number of parameters to be estimated is 

low and in turn non-linear projection may better 

discriminate the data in the reduced subspace. 

V. CONCLUSION 

Based on the above experiments we can conclude that 

non-linear projection is better than linear projection in 

terms of classification accuracy. In generative models like 

Gaussian Mixture models (GMMs) high dimensional data 

brings severe problems as the number of parameters to be 

estimated is proportional to the dimensionality of the data. 

By reducing the number of dimensions using non-linear 

projection, the number of parameters to be estimated is 

low and in turn non-linear projection may better 

discriminate the data in the reduced subspace. 
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