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Abstract— A sequential circuit design is done by using Finite State Machines (FSM’s). This paper proposes a new FSM watermarking 

scheme by which the authorship information can be made into a non-redundant property of FSM. In the existing free transitions of state 

transition graph (STG), the watermark bits are interwoven into the outputs to overcome the vulnerability to state removal attack and to 

minimize the design overhead. Other than conventional transition based STG watermarking, pseudo input variables have been reduced and 

made functionally indiscernible by the notion of reserved free literal. To minimize the overhead of watermarking and make the watermarked 

FSM fallible upon removal of any pseudo input variable the assignment of reserved literals is exploited. A convenient and direct scheme is 

also proposed to allow the watermark on the FSM to be publicly detectable. Experimental results on the watermarked circuits from the 

ISCAS’89 and IWLS’3 benchmark sets show acceptably low overheads with higher tamper resilience and stronger authorship proof in 

comparison with related watermarking schemes for sequential functions    

Keywords— Finite state machine (FSM), intellectual property (IP) protection, IP watermarking, sequential design, state 

transition graph (STG). 

 

I.  INTRODUCTION  

As reuse based design methodology has taken hold, the very 

large scale integration (VLSI) design industry is confronted 

with the increasing threat of intellectual property (IP) 

infringement. IP providers are in pressing need of a 

convenient means to track the illegal redistribution of the sold 

IPs. An active approach to protect a VLSI design against IP 

infringement is by embedding a signature that can only be 

uniquely generated by the IP author into the design during the 

process of its creation. When a forgery is suspected, the 

signature can be recovered from the misappropriated IP to 

serve as undeniable authorship proof in front of a court. 

Such a copyright protection method is widely known as 

watermarking. It is cheaper and more effective than patenting 

or copyrighting by law to deter IP piracy [1]. 

Unlike the digital content in the media industry, a VLSI IP is 

developed in several levels of design abstraction with the help 

of many sophisticated electronic design automation tools. 

Each level of design abstraction involves solving some NP-

complete optimization problems to satisfy a set of design 

constraints. In the regime of constraint-based watermarking, 

the signature to be imprinted is converted into a set of extra 

constraints to be extraneously satisfied by the watermarked 

design [2]. The watermark embedded at a higher level of 

design abstraction must survive the posterior optimizations so 

that the same IP distributed at all lower abstraction levels are 

protected. From the authorship verification perspective, IP 

watermarking can be classified into static watermarking and 

dynamic watermarking [3]. In the watermark detection phase, 

static watermarking [4]–[8] requires the downstream design to  

 

 

be reverse engineered to the level where the watermark is 

embedded to show the additional constraints generated by the 

author’s signature are satisfied. Reverse engineering is 

expensive and intrusive as some critical design data used to 

produce the watermarked IP may be exposed in this process. 

On the other hand, dynamic watermarking [9]–[17] enables 

the embedded information to be detected from the output 

without reverse engineering by running the protected design 

with a specific code sequence. 

Dynamic watermarking is typically performed in the state 

transition graph (STG) of finite state machine (FSM) [11]–

[14], in the architectural level of digital signal processors [9], 

[10] or at the design-for-testability stage [15]–[17]. FSM 

watermarking embeds the signature at a higher 

(behavioral/RT) level of design abstraction whereas the latter 

normally embeds the signature after logic synthesis. 

Embedding the watermark at the behavioral level has the 

advantage that it is harder for the attacker to erase the 

watermark in the downstream design by simple redundancy 

removal or logic manipulation, but it is also challenging to 

keep the overhead of watermarked design low. 

In this paper, a new dynamic watermarking scheme is 

proposed. The watermark is embedded in the state transitions 

of FSM at the behavioral level. As a FSM design is usually 

specified by a STG or other behavioral descriptions that can 

be easily translated into STG, the watermark is embedded into 

the STG of any size and remains a property of FSM after the 

watermarked design is synthesized and optimized into circuit 

netlist. The authorship can be directly verified even after the 
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downstream integrated circuit design processes by running the 

watermarked FSM with a specific code sequence. Unlike [12], 

our watermark verification is simple and efficient even for 

large designs. On the other hand, as extracting the STG from a 

gate level netlist is computationally impractical for large 

circuits [11], there are limited options for an attacker to 

remove or hide the watermark from the watermarked design 

netlist or netlist obtained by reverse engineering its 

downstream design [13]. The proposed watermarking scheme 

is robust against state reduction attacks. It is different from 

other transition based embedding methods [13], [14] in that it 

has lower embedding overhead and has overcome the 

vulnerability of auxiliary inputs which are inevitably 

introduced if the embedding capacity is limited, especially for 

completely specified FSM. The weaknesses of the existing 

FSM watermarking scheme to be overcome in this paper are 

discussed in the next section.  

The proposed watermarking scheme thus makes the 

authorship proof harder to erase and the IP authorship easier to 

verify. The rest of this paper is organized as follows. In 

Section II, we discuss related works. Our new FSM 

watermarking scheme is presented in Section III. In Section 

IV, we analyze the resilience of the proposed watermarking 

method. Section V presents experimental results on 

benchmark designs. Finally, Section VI concludes this paper. 

II. RELATED WORK 

The notion of constraint-based watermarking, first proposed 

by Hong and Potkonjak [2], has now been widely applied to 

embed authorship signatures into VLSI designs developed at 

different design abstraction levels, such as architectural level 

[9], [10], combinational logic synthesis level [4]–[7], and 

physical placement and routing [8]. At behavior level, STG 

representation makes watermarking FSMs in industrial 

designs promising as efficient sequential logic synthesis tools 

and optimization methods are available to lower the cost of 

embedding and detection of watermark. FSM watermarking 

has the advantage that the IP author signature can be lucidly 

recovered by applying a verification code sequence. As the 

STG is in general exponentially larger than the circuit 

description itself [12], it is computationally impractical to 

analyze the circuit to extract the STG. Such a scheme 

therefore has high resilience against tampering at lower 

abstraction levels. A FSM is characterized by a set of internal 

states and transitions between them. Approaches to FSM 

watermarking can be classified based on whether the 

authorship information is embedded in the states [11], [12] or 

on the transitions [13], [14]. In [12], the FSM is watermarked 

by introducing redundancy in the STG so that some 

exclusively generated circuit properties are exhibited to 

uniquely identify the IP author. 

However, the watermark will not survive upon removal of all 

redundant states by the application of a state minimization 

program [18]–[20]. Watermarking on the states of FSM is thus 

vulnerable to state optimization attacks. Two possible ways to 

verify the presence of a watermark are provided in [12]. The 

implicit binary decision diagram-based enumeration method is 

too slow for large circuits. The ATPG-based method requires 

the solution of an NP-complete problem and is not evident that 

the verification can be carried out efficiently on large circuits. 

The properties of the transitions in FSM can also be explored 

for watermark embedding. A FSM watermarking scheme was 

proposed in [13] by inserting redundant transitions into the 

original STG after the unspecified transitions in the STG are 

searched and associated with the user-defined input/output 

sequence. The weakness of this scheme is the monotonous use 

of only the unspecified transitions with the specified outputs 

of STG for watermark insertion. The embedding capacity is 

limited by the number of free input combinations. 

For FSMs with limited unspecified transitions, the probability 

of coincidence is high. If the watermark length is increased 

beyond the available number of unspecified transitions to 

boost the authorship proof, the overhead aggravates rapidly. 

To increase the robustness of FSM watermarking, besides the 

unspecified transitions, existing transitions are also utilized in 

an output mapping algorithm to watermark the FSM [14]. 

This method takes advantage of the original transitions in the 

STG to lower the overhead of watermarking. The embedding 

process is fast as no special effort is made to search the states 

of STG. The watermark bits are embedded at large by a 

random walk of the STG. When all output bits of an existing 

transition of a visited node coincide with a substring of the 

watermark, that transition is automatically watermarked. 

Otherwise, extra watermarked transition will be added to the 

STG. When the number of outputs of FSM increases or when 

the FSM is completely specified, output coincidence of 

existing transition with the watermark bits becomes rare. 

The watermarked FSM is susceptible to removal attack if the 

ratio of augmented transitions to coinciding transitions is high. 

When only unspecified transitions are watermarked, the 

scheme becomes as vulnerable as [13]. If no unspecified 

transitions are available for watermarking, a pseudo input 

variable is added. This input variable is assigned a fixed logic 

value of “0” for all existing transitions, and a fixed “1” for the 

added transitions. This discrimination between the existing 

transitions and added transitions is conspicuous. Moreover, the 

addition of new input variables with fixed assignments on all 

transitions increases the decoder logics and hence the 

overhead of watermarked FSM significantly. Removal of the 

pseudo inputs can easily eliminate or corrupt the watermark 

without affecting the FSM functionality. 

In what follows, a more robust technique of transition-based 

FSM watermarking is proposed to overcome the shortcomings 

of the above methods. Provisions are also made to facilitate 

the FSM watermark to be readily verified off-chip through the 

scan chain.  

III.  FINITE STATE MACHINE WATERMARKING 

A. Preliminaries 

      A formal definition of a FSM is given in [19] as follows. 

Definition 1: A FSM is a tuple                   , where 

∑ and ∆ are finite, non-empty sets of the input and output 

alphabets, respectively. Q is a finite, non-empty set of states 

and        represents a unique reset state.  

                    is the state transition function and 

                       is the output function, where Ø 

denotes an unspecified state and τ denotes an unspecified 

output. 

For              is said to be the next state of si if 

                      . The application of X on si also 
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produces an output,                . For a FSM with n 

input and k output variables, each input alphabet,    
            , is a string of n bits and each output alphabet, 

               , is a string of k bits. Each bit of X and Y, xi, 

yi  {0, 1, −}, where “0” and “1” are the binary constants, and 

“−” denotes a “don’t care” value. To avoid unnecessary 

notational complexity, we use an upper case letter to denote an 

input or output alphabet in ∑ and ∆, a lower case letter to 

denote an input or output variable in          and      to 

address the jth bit of the ith alphabet,   . 

FSMs are usually designed with their STG. A STG, 

                 is a labeled directed graph of a machine 

M of V nodes and E edges. Each symbolic state,    , is 

represented by a node in V. A state transition t from a source 

node      to a destination node      is represented by a 

directed edge,        , connecting      to     . Each edge is 

tagged with an input/output label,          , to encapsulate 

the relations,                     and                    . 
Thus, a state transition t can be represented by a quadruple 

                     . The input combinations that are 

absent from all transitions of a source state in a STG are called 

the free (or unspecified) input combinations of that state, and a 

transition that can be created from the free input combinations 

is called an unspecified transition. Unlike [12], as the number 

of states in a FSM is a dominant factor of the implementation 

complexity, we modify only the properties of the edge set to 

synthesize the watermarked design in order to preserve the 

nodes in STG(M). 

In light of dynamic watermarking, the watermark detection 

process involves the abstraction of an output sequence, 

                        , from the watermarked design  ̂ 

by applying a specific input sequence,  ̂     ̂   ̂      ̂ , 

  ̂   , on a state,  ̂   , such that  ̂   ( ̂  ̂)  

  ( ( (  ( ̂  ̂) )  ̂   )  ̂ )  The watermark synthesis 

process requires that the outputs of  ̂ be compatible with the 

outputs of M for every input symbol, ̂    , and output 

mappings of  ̂ for every input symbol,   ̂            , be 

dictated by a signature that identifies the ownership of a 

design. The signature is cryptographically generated with a 

secret key so that  ̂     ̂  ̂  becomes a unique property 

of  ̂. 

In [13] and [14], the length N of  ̂ and  ̂ is equal to m/k, 

where m is the watermark length and k is the number of output 

variables of a FSM. Fig. 1(a) shows an example of a STG with 

three states, S1, S2, and S3. The state transitions are determined  

by a 1 bit input variable and a 3 bit output variable, i.e., n = 1 

and k = 3. When the scheme in [14] is applied to embed an 8 

bit watermark sequence “10101000,” three (m/k = 3) 

consecutive transitions will be searched to match the 

watermark bits with the output bits. If the search starts from 

S1, as all transitions from S1 have no output coinciding with 

the first three watermark bits of “101,” a new transition will be 

inserted. Since S1 has no free input combination, a new input 

variable is introduced. 

This input variable is assigned to “0” for all existing 

transitions and “1” for all added transitions, and the bits are 

underlined in Fig. 1(b). 

 
Fig. 1. Watermark embedding on transitions of STG. (a) Original STG.  

(b) Watermarked STG by the scheme in [14]. (c) Excitation of watermarked 
transitions of STG in (b). (d) Watermarked STG by proposed scheme.  

(e) Excitation of watermarked transitions of STG in (d). 
 

A new transition (S1, S2, 11, 101) from S1 is added with an 

arbitrarily chosen next state S2 as indicated by the bold dashed 

arc in Fig. 1(b). As S2 has no edge with output bits coinciding 

with “010,” another new transition (S2, S3, 01, 010) is added 

with the randomly selected next state S3. The existing 

transition (S3, S1, 10, 001), printed bold in Fig. 1(b), and has 

an output matching with the watermark bits “00.” So it is 

reused for watermarking. The watermarked design synthesized 

by SIS [23] has 640 units of area, 7.2 units of delay, and 201.8 

units of power. Comparing with the original design with 448, 

6, and 178 units of area, delay, and power, respectively, the 

FSM watermarked by [14] incurs 42.9%, 20%, and 13.4% 

overheads in area, delay, and power, respectively. 

In this example, the output is a 3 bit (k = 3) alphabet. The 

probability of the output of a transition coinciding with the 

watermark bits is as low as 1/8, which results in only out of 

three existing transitions being used for watermarking. When k 

is larger, it becomes more difficult to make use of existing 

transitions to reduce the overhead of watermarking due to the 

low probability of output coincidence. The fixed assignment 

of the added input variable also increases the design 

complexity. Moreover, as all output bits are watermarked in 

consecutive transitions after the starting state on which  ̂ is 

applied, as shown in Fig. 1(c), the watermarked transitions are 

not well obfuscated, causing the watermarked FSM to be 

vulnerable. 

To overcome these problems, we make         so 

that not all bits in  ̂are watermarked. The locality of the 

watermark is randomized by a cryptographic one-way function 

such that any number (from 1 to k) of bits at any output bit 

from any transition of STG is probable to be watermarked. 

The general idea can be illustrated using the same STG 

example in Fig. 1(a). Since        , it is set to 8. The 

localities of these 8 watermark bits are randomly generated 



International Journal of Advanced Scientific Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X)     Volume.2,Issue.12,December.2016 

www.ijastems.org Page 56 
 

between              without replication. Suppose these 

numbers are                        . So, eight transitions 

will be sought to produce an output sequence that contains the 

watermark sequence “10101000” at these bit positions in the 

output. As the 8 watermark bits are dispersed into eight 

transitions, the probability of the output of an existing 

transition coinciding with the watermark bit is as high as 1/2, 

which results in five existing transitions being reused for 

watermarking and only one new transition is added, as shown 

in Fig. 1(d). As the newly added transition is well blent with 

the existing transitions, when  ̂ is applied on the FSM to 

detect the watermark, it is hard for an attacker to differentiate 

it from others, as indicated by the bold arrow in Fig. 1(e). To 

increase the watermark strength and minimize the next state 

decoder logic of watermarked design, we also capitalize on the 

extra headroom created by the pseudo input variables and free 

input combinations of the FSM. In Fig. 1(d), when a new input 

variable is introduced, it does not need to be fixed and it can 

remain as don’t care in the final watermarked design if it is 

not used for the generation of any new transitions. The 

synthesized design from Fig. 1(d) has 520, 6.4, and 190.2 units 

of area, delay, and power, respectively. The overheads due to 

watermarking are only 16.1% on area, 6.7% on timing, and 

6.9% on power. The advantage over [14] is discernible. 

With these preliminaries, our proposed FSM watermarking 

algorithm will be elaborated next. 

 

B. Generation of Watermark and Random Sequence 

A meaningful text string, MSG, is first encoded into a 

binary string and then encrypted by a provable cryptographic 

algorithm with the secret key    of the IP owner. If the length 

of the encrypted message is too long, a message digest (MD) 

algorithm can be used to reduce its length. The resultant 

binary bit vector of length m is the watermark,          
 

 

and         .  
A keyed one-way pseudorandom number generator 

(PNG) is used to generate a sequence,         
 , of m 

unique integers between 1 and    , i.e.,            i = 

1, 2, . . . , m and            . The length N of sequence  ̂ 

is determined empirically. The purpose of B is to randomly 

disperse the m watermark bits into ̂. If          
                  such that           , then 

 ̂      , where  ̂    is the jth bit of  ̂   ̂. The secure hash 

algorithm SHA-1 [21] can be used as an MD as well as in a 

keyed one-way PNG for the generation of these two random 

sequences, W and B. As it is computationally infeasible to find 

a collision of this hash function, the possibility that the same 

group of numbers is generated by coincidence is extremely 

low without the knowledge of the secret key. 

 

TABLE I 

INTERSECTION OF TWO TERNARY VARIABLES 

 

  0 1 - 

0 0 Ø 0 

1 Ø 1 1 

- 0 1 - 

 
Fig. 2. Generation of watermarked output sequence. 

 

C. Watermarking Insertion 

The watermark W is inserted into STG(M) by 

modifying some of its edges without changing the operational 

behavior of M to find a sequence of N consecutive transitions, 

 ̂  ( ̂   ̂     ̂   ̂ )          , such that each watermark 

bit,             , will be randomly mapped to one bit in 

the sequence,  ̂   ̂  ̂    ̂    ̂    . 

 ̂    ̂       ̂     ̂      ̂   . The mapping from W to  ̂ is 

injective but not surjective. The value of each bit  ̂    in  ̂ can 

be determined as follows: if ( i– 1 ) k +  j =  bl, then ˆyi,j =  
wl ,  e l s e  ˆyi,j =  “– , ” as shown in Fig. 2. 

Given an output ˆYi and a source state ˆsi, the destination 

state ˆsi+1 of watermarked transition ˆti will be determined by 

an output compatibility check. Two bits, x, y   {0, 1, −}, are 

compatible if they are of equal value or one of them has a 

don’t care value, i.e., x ∩ y _= Ø. This intersection of two 

ternary variables is defined in Table I. Likewise, two 

alphabets, X and Y are compatible, denoted by X ≡ Y, if none 

of the elements in X ∩ Y = {xi ∩ yi} has a null value. 

Starting with i = 1, an arbitrary state, ˆs1  Q, is selected. 

Let T(ˆsi) be the set of transitions emanating from a state, ˆsi. 

A set of transitions C(ˆsi) that is output compatible with ˆYi is 

sought, i.e., C(ˆsi) = {ti   T (ˆsi)|O(ti) ≡ ˆY1}. To avoid  

entering into a deadlock, transitions terminated at a deadlock 

state (i.e., state with no fanout) are excluded from C(ˆsi). Four 

distinct scenarios are considered for the determination of ˆti. 

1) Case 1: there is only one output compatible transition, 

|C(ˆsi)| = 1, then ˆti = C(ˆsi) and ˆsi+1 = D(ˆti). 

2) Case 2: if more than one output compatible transition are 

found, i.e., |C(ˆsi)|> 1, then a transition from C(ˆsi), with the 

next state having the highest number of free input 

combinations, will be selected asˆti. Its output will be 

modified to O(ˆti) = O(ˆti)   ˆYi and ˆsi+1 = D(ˆti). 

3 )  Case 3: i f  |C ( ˆsi ) | =  0 ,  t h e n  t h e  

f r e e  i n p u t  c o m b i n a t i o n s  o f  
ˆsi w i l l  b e  c o n s i d e r e d .  L e t  F ( ˆsi )  =  

{X ∈ _|δ (ˆsi,X ) =  Ø} b e  t h e  s e t  o f  f r e e  

i n p u t  c o m b i n a t i o n s  o f  ˆsi . F o r  

F (ˆsi )  _ =  Ø , l e t  D ( ˆsi)  =  {ˆsj ∈ Q|ˆsj =  D ( ˆti)  

∀ˆti ∈ T (ˆsi )} b e  t h e  s e t  o f  

a l l  d e s t i n a t i o n  s t a t e s  o f  ˆsi . ˆsi+1 i s  

s e t  t o  t h e  s t a t e  w i t h  t h e  
h i g h e s t  n u m b e r  o f  f r e e  i n p u t  
c o m b i n a t i o n s  i n  D( ˆsi )  
( e x c l u d i n g  t h e  d e a d l o c k  
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s t a t e s )  u n l e s s  D (ˆsi )  =  Ø . W h e n  
D (ˆsi )  =  Ø, ˆsi+1 i s  s e t  t o  t h e  s t a t e  

w i t h  t h e  h i g h e s t  n u m b e r  o f  
f r e e  i n p u t  c o m b i n a t i o n s  i n  
STG (M ) .  I f  t h e r e  e x i s t s  a n  e d g e  
c o n n e c t i n g  ˆsi t o  ˆsi+1 i n  STG (M ) ,  a  
n e w  i n p u t / o u t p u t  p a i r ,  I ( ˆti ) /O ( ˆ ti ) ,  
i s  a d d e d  f o r  t h e  t r a n s i t i o n ˆ ti .  
O t h e r w i s e ,  a  n e w  e d g e  
d i r e c t e d  f r o m  ˆsi t o  ˆsi+1 l a b e l e d  
w i t h  I ( ˆti ) /O ( ˆti ) w i l l  b e  c r e a t e d  i n  
STG (M )  f o r  ˆti , a n d  O ( ˆti )  =  ˆYi . T h e  
d e t e r m i n a t i o n  o f  I ( ˆti )  w i l l  b e  

e x p l a i n e d  l a t e r .  
4) Case 4: if |C(ˆsi)| = 0 and F(ˆsi) = Ø, then a pseudo input 

variable xn+1 needs to be introduced in M and the number of 

input variables n is incremented by 1. xn+1 is set to an 

unspecified logic value “*” for all existing transitions. A new 

edge directed from ˆsi to ˆsi+1 labeled with I(ˆti)/O(ˆti) will be 

created for ˆti. ˆsi+1 is set to the state with the highest number 

of free inputs in D(ˆsi) or in STG(M) if D(ˆsi) = Ø, and O(ˆti) 

= ˆYi. Both symbols “*” and “–” can assume either a logic “0” 

or a logic “1” value but there is a subtle difference. “–” is 

meant for the currently used input combinations whereas “*” 

can be associated with either the used or free input 

combinations. A “*” can be construed as a reserved free input 

literal as its logic state (“0” or “1”) will only be defined at the 

time when some input combinations subsumed by it are freed 

to become I(ˆti). 

The pseudo codes for the determination of 

watermarked transitions are shown in Fig. 3. The input 

alphabets for the watermarked transitions found in Cases 3 and 

4 are determined by the subroutine Find shown in Fig. 4. 

When there is no existing transition with compatible output, as 

in Cases 3 and 4, the input alphabet I(ˆti) for O(ˆti) = l[ˆsi, 

I(ˆti)] = ˆYi needs to be determined. I(ˆti) is set to one of the 

free input combinations of ˆsi if no “*” appears in all the used 

input combinations of ˆsi. Otherwise, an alphabet, X   I(tu), tu 

  T(ˆsi), that contains at least one “*” from the set of used 

input combinations of ˆsi will be split into two. Initially, I(ˆti) 

= X. A “*” bit in X is selected and assigned a fixed but 

randomly generated binary constant, a   {0, 1}, while the 

corresponding “*” bit in I(ˆti) is assigned its complement ¯a. 

Meantime, all the “–” bits in I(ˆti) are replaced by the “*” bits. 

For example, if X = “1–*” and a = 0, then it will be split into X 

= “1–0” and I(ˆti) = “1*1.”  

 The above watermarking process is repeated for i = 2 

to N until ˆtN is determined. The residual “*” in the input 

alphabets of all edges will be replaced with “–” and the 

resultant STG(M) is the watermarked STG( ˆM) and ˆX = I 

_ˆt1_ I _ˆt2_ ・ ・ ・ I _ˆtN_. 

If the overhead of watermarked design is not satisfactory, the 

entire process can be repeated with an adjusted value of N. 

The overall watermark insertion process is shown in Fig. 5. 

For each pseudo input variable added, at least 2n−1 potential 

free input combinations are created in every state transition, 

where n refers to the total number of input variables including 

the pseudo variables. 

These free input combinations have been consumed 

in [14] by fixing the value of each pseudo input variable to be 

“0” consistently for all existing transitions and “1” 

consistently for the watermarked transition immediately upon 

its creation. This has not only increased the complexity of the 

decoders, but also made the watermarked transition 

discernible from the pseudo inputs. The introduction of 

reserved free literal allows the assignments of “*” in the input 

alphabets of all transitions to be deferred until some input 

combinations subsumed by it are needed to watermark a 

transition. The transformation of “–” to “*” in I(ˆti) when a 

random assignment is made on “*” serves two important 

purposes. 

   
F i g .  3 .  D e t e r m i n a t i o n  o f  
w a t e r m a r k e d  t r a n s i t i o n .  
 

 
F i g .  4 .  F i n d i n g  i n p u t  a l p h a b e t  

f o r  t h e  w a t e r m a r k e d  
t r a n s i t i o n .  

 



International Journal of Advanced Scientific Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X)     Volume.2,Issue.12,December.2016 

www.ijastems.org Page 58 
 

 
F i g .  5 .  A l g o r i t h m  f o r  F S M  

w a t e r m a r k i n g .  
 

First, it judiciously preserves the don’t care inputs in the 

transitions to optimize the design of next state and output 

decoders. Second, it allows the same edge to be revisited for 

watermarking to maximally exploit the free input 

combinations. This will minimize the required number of 

pseudo input variables, especially when a long watermark is to 

be embedded for a strong authorship proof. 

 The number of transitions N has no bearing on the 

probability of coincidence but it has impact on the cost of 

watermarking. If N is small, the probability of finding 

compatible outputs from existing transitions is low and more 

design overhead will be incurred. On the other hand, if N is 

large, fewer new transitions and pseudo inputs need to be 

added which will lower the cost of watermarking, but the code 

sequences required to detect the watermark are long. As our 

embedding algorithm can run very quickly even for large 

FSM, the watermarking process can be repeated for different 

N to select the least overhead watermarked design with 

reasonable verification code length. The procedure shown in 

Fig. 6 is suggested to legitimately limit the number of trials. 

Let Awmi denote the area of watermarked FSM with N = Ni at 

the ith trial. Ni = Ni−1 •} δi  and N1 ≈ m. Ni that is 

incremented (or decremented) by δi depends on the extent to 

which Awmi−1 is increased (or reduced) over the previous 

trial. The standard deviation, σi, of Awm is defined as 

 

 

 
Fig. 6. Minimization of FSM watermarking overhead by 

adaptation of N. 

 

D. Watermark Detection 

To verify the authorship, one needs to run the watermarked 

FSM with the input sequence, ˆX = {ˆX1, ˆX2, ・ ・  , ˆXN}, 

applied on state ˆs1. If the operation halts before N transitions, 

the watermark cannot be detected. Otherwise, an output 

sequence ˜Y of N × k bits is obtained. The bits indexed by the 

set B of m random numbers are selected from ˜Y to form an 

ordered sequence ˜W . The authorship is proved if ˜W perfectly 

matches or is highly correlated with the watermark W of the IP 

owner . S i n c e  t h e  s c a n  c h a i n  i s  

u s e d  a s  a  m e d i u m  t o  a i d  
a u t h o r s h i p  v e r i f i c a t i o n  o f  t h e  
I P  e n c a p s u l a t e d  i n  t h e  t e s t  
k e r n e l ,  i t  c a n  a l s o  b e  
i n d e p e n d e n t l y  p r o t e c t e d  b y  
[ 1 6 ]  a n d  [ 1 7 ]  t o  b o o s t  t h e  
c o n f i d e n c e  i n  p o s i t i v e  
w a t e r m a r k  i d e n t i f i c a t i o n .  B y  
w a t e r m a r k i n g  t h e  s c a n  c h a i n  
o f  w a t e r m a r k e d  F S M  u s i n g  
t h e  t e c h n i q u e s  p r o p o s e d  i n  
[ 1 6 ]  a n d  [ 1 7 ] ,  t h e  a g g r e s s o r  
n e e d s  a d d i t i o n a l  e f f o r t  t o  a l s o  
s u c c e s s f u l l y  t a m p e r  o r  
r e d e s i g n  t h e  t e s t  s t r u c t u r e  t o  
p r o v i d e  t h e  f a u l t  c o v e r a g e  o f  
t h e  p i r a t e d  I P .  F a i l u r e  t o  
d e t e c t  t h e  s c a n  c h a i n  s i g n a t u r e  
a l e r t s  m a l i c i o u s  t a m p e r i n g  o r  
r e m o v a l  o f  t h e  t e s t  s t r u c t u r e  i n  
a t t e m p t  t o  m i s a p p r o p r i a t e  t h e  
p r o t e c t e d  I P .  
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Fig. 7. Example of watermarking on FSM. (a) Original FSM. 

(b) Use of existing transition. (c) Introduction of pseudo input 

variable and new transition. (d) Watermarked FSM. (e) 

Excitation of watermarked transitions. 

 

E. An Illustrative Example 

The STG of a simple FSM to be watermarked is shown in Fig. 

7(a). It has five states, represented mnemonically as Q = {s1, 

s2, s3, s4, s5}. Assume that the encrypted watermark W = 

“110110.” The number of output labels to be mapped, N 

should be greater than 6/2 = 3 as m = 6 and k = 2. Let N = 7. 

Suppose the set of six random numbers between 1 and 14 (k × 

N) generated by the PNG with the IP owner’s secret key is B = 

{9, 4, 2, 7, 12, 3}. 

Following the algorithm in Fig. 2, since 2(1 −1)+1 = 1 /   

B, ˆy1,1 = “–;” since 2(1 − 1) + 2 = 2 = b3, ˆy1,2 = w3 = “0;” 

3 = b6⇒ˆy2,1 = w6 = “0;” 4 = b2 ⇒ˆy2,2 = w2 = “1;” 5 /   B 

⇒ˆy3,1 = “–;” 6 /   B ⇒ˆy3,2 = “–;” 7 = b4 ⇒ˆy4,1 = w4 = 

“1;” 8 /   B ⇒ˆy4,2 = “–;” 9 = b1 ⇒ˆy5,1 = w1 = “1;” 10 /   B 

⇒ˆy5,2 = “–;” 11 /   B ⇒ˆy6,1 = “–;” 12 = b5 ⇒ˆy6,2 = w5 = 

“1;” 13 /   B ⇒ˆy7,1 = “–” and 14 /   B ⇒ˆy7,2 = “–.” Hence, 

ˆY = “–0 01– –1–1– –1– –.” 

T o  v e r i f y  t h e  e x i s t e n c e  o f  
w a t e r m a r k  W ,  a n  i n p u t  
s e q u e n c e ,  
ˆX =  ( “ 0 1 – , ”  “ 1 0 0 , ”  “ 1 1 – , ”  “ 0– 0 , ”  “ 1–  –

, ”  “ 0 0 – , ”  “ 0 0 – ” ) ,         “–”  ∈ { 0 , 1} ,  i s  

a p p l i e d  o n  t h e  s t a t e  s1 .  A  
b i n a r y  s t r e a m  ˜ W i s  r e t r i e v e d  

f r o m  t h e  b i t  p o s i t i o n s ,  9 ,  4 ,  2 ,  
7 ,  1 2 ,  3  o f  t h e  o u t p u t  s e q u e n c e  
ˆY .  I f  ˜W =  W =  “ 1 1 0 1 1 0 , ”  t h e  

a u t h o r s h i p  i s  p r o v e d .  
 

IV. Watermark Resilience Analysis 

A. Authorship Credibility 

The credibility of the authorship proof can be evaluated by the 

probability that an unintended watermark is detected in a 

design [13]. Suppose that an arbitrary input sequence exits to 

excite N  (N  = N) consecutive transitions through the 

reachable states of a FSM with k output variables. The output 

sequence of length N (each output alphabet has k binary bits) 

will be one of 2k×N possible solutions. The odds that the 

output sequence contains the identical watermark bits at the 

positions specified by the author’s signature are  

 

 
The false positive rate, which is the probability that the 

watermark is detected in the output sequence under a different 

random input sequence, can be estimated statistically. If there 

are NC(τ) output sequences detected with at least τ fraction of 

matched watermark bits when NT random input sequences are 

applied, then the false positive rate is determined as 

 

 

 
Where 0 ≤ τ ≤ 1. To constitute a false positive, τ = 1 since all 

bits extracted from the specific positions by the detector need 

to be matched exactly with the watermark bits. As τ reduces, 

Pλ increases and a threshold of discrimination can be 

determined empirically that with certain degree of confidence, 

the authenticity of the design can be assured by detecting only 

a fraction of the watermark bits. A suitable error correction 

scheme can also be considered based on Pλ to correct the 

partially corrupted output subsequence due to tampering.  

 
Fig. 8. FSM retiming. 

Pc and Pλ are important to repudiate the denial of authorship. 

To show that the output sequences excited by the verification 

input cannot be obtained by trial-and-error to match the 

watermark, the claimant needs only to demonstrate that the 

watermark and the watermarked positions in the output 

sequence are uniquely generated with a cryptographic one-

way function using a secret key in his/her possession, 

provided that Pc is very low and Pλ is low enough for a 

sufficiently large number of random tests. 

 

 
 

F i g .  9 .  W a t e r m a r k i n g  w i t h  
t h i r d  p a r t y  k e e p i n g  a  t i m e -

s t a m p e d  s i g n a t u r e .  
 

V. Conclusion 

This paper presented a new robust dynamic watermarking 

scheme by embedding the authorship information on the 

transitions of STG at the behavioral synthesis level. The 

proposed method offers a high degree of tamper resistance and 

provides easy and noninvasive copy detection. The FSM 

watermark is highly resilient to all conceivable watermark 

removal attacks. The redundancy in the FSM has been 
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effectively utilized to minimize the embedding overhead. By 

increasing the length of input code sequence for watermark 

retrieval and allowing the output compatible transitions to be 

revisited to embed different watermark bits, the watermarks 

are more randomly dispersed and better concealed in the 

existing transitions of FSM. The new approach to the logic 

state assignments of pseudo input variables also makes it 

infeasible to attack the watermarked FSM by removing the 

pseudo inputs. Our experimental results show that the 

watermarking incurs acceptably low performance overheads 

and possesses very low possibility of coincidence and false 

positive rate. 

Similar to other FSM watermarking schemes [12]–[14], this 

method is not applicable to some ultrahigh speed designs that 

do not have a FSM. Fortunately, regular sequential functions 

are omnipresent in industrial designs [13], making FSM 

watermarking a key research focus for dynamic watermarking. 

One recommendation to overcome such limitation is to 

augment it with combinational watermarking scheme [5] 

applied simultaneously or on different levels of design 

abstraction to realize hierarchical watermarking [9], [10]. The 

watermarked FSM can be fortified by a scan chain 

watermarking [16], [17] to enable the authorship to be easily 

verified even after the protected IP has been packaged. While 

the robustness of the authorship proof lies mainly on the 

watermarked FSM, the auxiliary post-synthesis scan-chain 

reordering serves as an intruder-alert for the misappropriation 

of sequential design under test and increases the effort level 

required to successfully forge a testable IP without being 

detected. Even if the scan chain is removed or deranged by the 

aggressor, the more robust FSM watermark remains intact and 

detectable on chip.  
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