
International Journal of Advanced Scientific Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.2,Issue.12,December.2016

www.ijastems.org Page 53

INTELLECTUAL PROPERTY PROTECTION OF

SEQUENTIAL CIRCUIT DESIGN USING FSM

WATERMARKING

S.Chaitanya

Assistant Professor, Dept. of ECE,

Christu Jyothi Institute of Technology & Science

Jangoan, Telangana, India

Email: schaitanya15@gmail.com

Abstract— A sequential circuit design is done by using Finite State Machines (FSM’s). This paper proposes a new FSM watermarking

scheme by which the authorship information can be made into a non-redundant property of FSM. In the existing free transitions of state

transition graph (STG), the watermark bits are interwoven into the outputs to overcome the vulnerability to state removal attack and to

minimize the design overhead. Other than conventional transition based STG watermarking, pseudo input variables have been reduced and

made functionally indiscernible by the notion of reserved free literal. To minimize the overhead of watermarking and make the watermarked

FSM fallible upon removal of any pseudo input variable the assignment of reserved literals is exploited. A convenient and direct scheme is

also proposed to allow the watermark on the FSM to be publicly detectable. Experimental results on the watermarked circuits from the

ISCAS’89 and IWLS’3 benchmark sets show acceptably low overheads with higher tamper resilience and stronger authorship proof in

comparison with related watermarking schemes for sequential functions

Keywords— Finite state machine (FSM), intellectual property (IP) protection, IP watermarking, sequential design, state

transition graph (STG).

I. INTRODUCTION

As reuse based design methodology has taken hold, the very

large scale integration (VLSI) design industry is confronted

with the increasing threat of intellectual property (IP)

infringement. IP providers are in pressing need of a

convenient means to track the illegal redistribution of the sold

IPs. An active approach to protect a VLSI design against IP

infringement is by embedding a signature that can only be

uniquely generated by the IP author into the design during the

process of its creation. When a forgery is suspected, the

signature can be recovered from the misappropriated IP to

serve as undeniable authorship proof in front of a court.

Such a copyright protection method is widely known as

watermarking. It is cheaper and more effective than patenting

or copyrighting by law to deter IP piracy [1].

Unlike the digital content in the media industry, a VLSI IP is

developed in several levels of design abstraction with the help

of many sophisticated electronic design automation tools.

Each level of design abstraction involves solving some NP-

complete optimization problems to satisfy a set of design

constraints. In the regime of constraint-based watermarking,

the signature to be imprinted is converted into a set of extra

constraints to be extraneously satisfied by the watermarked

design [2]. The watermark embedded at a higher level of

design abstraction must survive the posterior optimizations so

that the same IP distributed at all lower abstraction levels are

protected. From the authorship verification perspective, IP

watermarking can be classified into static watermarking and

dynamic watermarking [3]. In the watermark detection phase,

static watermarking [4]–[8] requires the downstream design to

be reverse engineered to the level where the watermark is

embedded to show the additional constraints generated by the

author’s signature are satisfied. Reverse engineering is

expensive and intrusive as some critical design data used to

produce the watermarked IP may be exposed in this process.

On the other hand, dynamic watermarking [9]–[17] enables

the embedded information to be detected from the output

without reverse engineering by running the protected design

with a specific code sequence.

Dynamic watermarking is typically performed in the state

transition graph (STG) of finite state machine (FSM) [11]–

[14], in the architectural level of digital signal processors [9],

[10] or at the design-for-testability stage [15]–[17]. FSM

watermarking embeds the signature at a higher

(behavioral/RT) level of design abstraction whereas the latter

normally embeds the signature after logic synthesis.

Embedding the watermark at the behavioral level has the

advantage that it is harder for the attacker to erase the

watermark in the downstream design by simple redundancy

removal or logic manipulation, but it is also challenging to

keep the overhead of watermarked design low.

In this paper, a new dynamic watermarking scheme is

proposed. The watermark is embedded in the state transitions

of FSM at the behavioral level. As a FSM design is usually

specified by a STG or other behavioral descriptions that can

be easily translated into STG, the watermark is embedded into

the STG of any size and remains a property of FSM after the

watermarked design is synthesized and optimized into circuit

netlist. The authorship can be directly verified even after the

International Journal of Advanced Scientific Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.2,Issue.12,December.2016

www.ijastems.org Page 54

downstream integrated circuit design processes by running the

watermarked FSM with a specific code sequence. Unlike [12],

our watermark verification is simple and efficient even for

large designs. On the other hand, as extracting the STG from a

gate level netlist is computationally impractical for large

circuits [11], there are limited options for an attacker to

remove or hide the watermark from the watermarked design

netlist or netlist obtained by reverse engineering its

downstream design [13]. The proposed watermarking scheme

is robust against state reduction attacks. It is different from

other transition based embedding methods [13], [14] in that it

has lower embedding overhead and has overcome the

vulnerability of auxiliary inputs which are inevitably

introduced if the embedding capacity is limited, especially for

completely specified FSM. The weaknesses of the existing

FSM watermarking scheme to be overcome in this paper are

discussed in the next section.

The proposed watermarking scheme thus makes the

authorship proof harder to erase and the IP authorship easier to

verify. The rest of this paper is organized as follows. In

Section II, we discuss related works. Our new FSM

watermarking scheme is presented in Section III. In Section

IV, we analyze the resilience of the proposed watermarking

method. Section V presents experimental results on

benchmark designs. Finally, Section VI concludes this paper.

II. RELATED WORK

The notion of constraint-based watermarking, first proposed

by Hong and Potkonjak [2], has now been widely applied to

embed authorship signatures into VLSI designs developed at

different design abstraction levels, such as architectural level

[9], [10], combinational logic synthesis level [4]–[7], and

physical placement and routing [8]. At behavior level, STG

representation makes watermarking FSMs in industrial

designs promising as efficient sequential logic synthesis tools

and optimization methods are available to lower the cost of

embedding and detection of watermark. FSM watermarking

has the advantage that the IP author signature can be lucidly

recovered by applying a verification code sequence. As the

STG is in general exponentially larger than the circuit

description itself [12], it is computationally impractical to

analyze the circuit to extract the STG. Such a scheme

therefore has high resilience against tampering at lower

abstraction levels. A FSM is characterized by a set of internal

states and transitions between them. Approaches to FSM

watermarking can be classified based on whether the

authorship information is embedded in the states [11], [12] or

on the transitions [13], [14]. In [12], the FSM is watermarked

by introducing redundancy in the STG so that some

exclusively generated circuit properties are exhibited to

uniquely identify the IP author.

However, the watermark will not survive upon removal of all

redundant states by the application of a state minimization

program [18]–[20]. Watermarking on the states of FSM is thus

vulnerable to state optimization attacks. Two possible ways to

verify the presence of a watermark are provided in [12]. The

implicit binary decision diagram-based enumeration method is

too slow for large circuits. The ATPG-based method requires

the solution of an NP-complete problem and is not evident that

the verification can be carried out efficiently on large circuits.

The properties of the transitions in FSM can also be explored

for watermark embedding. A FSM watermarking scheme was

proposed in [13] by inserting redundant transitions into the

original STG after the unspecified transitions in the STG are

searched and associated with the user-defined input/output

sequence. The weakness of this scheme is the monotonous use

of only the unspecified transitions with the specified outputs

of STG for watermark insertion. The embedding capacity is

limited by the number of free input combinations.

For FSMs with limited unspecified transitions, the probability

of coincidence is high. If the watermark length is increased

beyond the available number of unspecified transitions to

boost the authorship proof, the overhead aggravates rapidly.

To increase the robustness of FSM watermarking, besides the

unspecified transitions, existing transitions are also utilized in

an output mapping algorithm to watermark the FSM [14].

This method takes advantage of the original transitions in the

STG to lower the overhead of watermarking. The embedding

process is fast as no special effort is made to search the states

of STG. The watermark bits are embedded at large by a

random walk of the STG. When all output bits of an existing

transition of a visited node coincide with a substring of the

watermark, that transition is automatically watermarked.

Otherwise, extra watermarked transition will be added to the

STG. When the number of outputs of FSM increases or when

the FSM is completely specified, output coincidence of

existing transition with the watermark bits becomes rare.

The watermarked FSM is susceptible to removal attack if the

ratio of augmented transitions to coinciding transitions is high.

When only unspecified transitions are watermarked, the

scheme becomes as vulnerable as [13]. If no unspecified

transitions are available for watermarking, a pseudo input

variable is added. This input variable is assigned a fixed logic

value of “0” for all existing transitions, and a fixed “1” for the

added transitions. This discrimination between the existing

transitions and added transitions is conspicuous. Moreover, the

addition of new input variables with fixed assignments on all

transitions increases the decoder logics and hence the

overhead of watermarked FSM significantly. Removal of the

pseudo inputs can easily eliminate or corrupt the watermark

without affecting the FSM functionality.

In what follows, a more robust technique of transition-based

FSM watermarking is proposed to overcome the shortcomings

of the above methods. Provisions are also made to facilitate

the FSM watermark to be readily verified off-chip through the

scan chain.

III. FINITE STATE MACHINE WATERMARKING

A. Preliminaries

 A formal definition of a FSM is given in [19] as follows.

Definition 1: A FSM is a tuple , where

∑ and ∆ are finite, non-empty sets of the input and output

alphabets, respectively. Q is a finite, non-empty set of states

and represents a unique reset state.

 is the state transition function and

 is the output function, where Ø

denotes an unspecified state and τ denotes an unspecified

output.

For is said to be the next state of si if

 . The application of X on si also

International Journal of Advanced Scientific Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.2,Issue.12,December.2016

www.ijastems.org Page 55

produces an output, . For a FSM with n

input and k output variables, each input alphabet,
 , is a string of n bits and each output alphabet,

 , is a string of k bits. Each bit of X and Y, xi,

yi {0, 1, −}, where “0” and “1” are the binary constants, and

“−” denotes a “don’t care” value. To avoid unnecessary

notational complexity, we use an upper case letter to denote an

input or output alphabet in ∑ and ∆, a lower case letter to

denote an input or output variable in and to

address the jth bit of the ith alphabet, .

FSMs are usually designed with their STG. A STG,

 is a labeled directed graph of a machine

M of V nodes and E edges. Each symbolic state, , is

represented by a node in V. A state transition t from a source

node to a destination node is represented by a

directed edge, , connecting to . Each edge is

tagged with an input/output label, , to encapsulate

the relations, and .
Thus, a state transition t can be represented by a quadruple

 . The input combinations that are

absent from all transitions of a source state in a STG are called

the free (or unspecified) input combinations of that state, and a

transition that can be created from the free input combinations

is called an unspecified transition. Unlike [12], as the number

of states in a FSM is a dominant factor of the implementation

complexity, we modify only the properties of the edge set to

synthesize the watermarked design in order to preserve the

nodes in STG(M).

In light of dynamic watermarking, the watermark detection

process involves the abstraction of an output sequence,

 , from the watermarked design ̂

by applying a specific input sequence, ̂ ̂ ̂ ̂ ,

 ̂ , on a state, ̂ , such that ̂ (̂ ̂)

 ((((̂ ̂)) ̂) ̂) The watermark synthesis

process requires that the outputs of ̂ be compatible with the

outputs of M for every input symbol, ̂ , and output

mappings of ̂ for every input symbol, ̂ , be

dictated by a signature that identifies the ownership of a

design. The signature is cryptographically generated with a

secret key so that ̂ ̂ ̂ becomes a unique property

of ̂.

In [13] and [14], the length N of ̂ and ̂ is equal to m/k,

where m is the watermark length and k is the number of output

variables of a FSM. Fig. 1(a) shows an example of a STG with

three states, S1, S2, and S3. The state transitions are determined

by a 1 bit input variable and a 3 bit output variable, i.e., n = 1

and k = 3. When the scheme in [14] is applied to embed an 8

bit watermark sequence “10101000,” three (m/k = 3)

consecutive transitions will be searched to match the

watermark bits with the output bits. If the search starts from

S1, as all transitions from S1 have no output coinciding with

the first three watermark bits of “101,” a new transition will be

inserted. Since S1 has no free input combination, a new input

variable is introduced.

This input variable is assigned to “0” for all existing

transitions and “1” for all added transitions, and the bits are

underlined in Fig. 1(b).

Fig. 1. Watermark embedding on transitions of STG. (a) Original STG.

(b) Watermarked STG by the scheme in [14]. (c) Excitation of watermarked
transitions of STG in (b). (d) Watermarked STG by proposed scheme.

(e) Excitation of watermarked transitions of STG in (d).

A new transition (S1, S2, 11, 101) from S1 is added with an

arbitrarily chosen next state S2 as indicated by the bold dashed

arc in Fig. 1(b). As S2 has no edge with output bits coinciding

with “010,” another new transition (S2, S3, 01, 010) is added

with the randomly selected next state S3. The existing

transition (S3, S1, 10, 001), printed bold in Fig. 1(b), and has

an output matching with the watermark bits “00.” So it is

reused for watermarking. The watermarked design synthesized

by SIS [23] has 640 units of area, 7.2 units of delay, and 201.8

units of power. Comparing with the original design with 448,

6, and 178 units of area, delay, and power, respectively, the

FSM watermarked by [14] incurs 42.9%, 20%, and 13.4%

overheads in area, delay, and power, respectively.

In this example, the output is a 3 bit (k = 3) alphabet. The

probability of the output of a transition coinciding with the

watermark bits is as low as 1/8, which results in only out of

three existing transitions being used for watermarking. When k

is larger, it becomes more difficult to make use of existing

transitions to reduce the overhead of watermarking due to the

low probability of output coincidence. The fixed assignment

of the added input variable also increases the design

complexity. Moreover, as all output bits are watermarked in

consecutive transitions after the starting state on which ̂ is

applied, as shown in Fig. 1(c), the watermarked transitions are

not well obfuscated, causing the watermarked FSM to be

vulnerable.

To overcome these problems, we make so

that not all bits in ̂are watermarked. The locality of the

watermark is randomized by a cryptographic one-way function

such that any number (from 1 to k) of bits at any output bit

from any transition of STG is probable to be watermarked.

The general idea can be illustrated using the same STG

example in Fig. 1(a). Since , it is set to 8. The

localities of these 8 watermark bits are randomly generated

International Journal of Advanced Scientific Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.2,Issue.12,December.2016

www.ijastems.org Page 56

between without replication. Suppose these

numbers are . So, eight transitions

will be sought to produce an output sequence that contains the

watermark sequence “10101000” at these bit positions in the

output. As the 8 watermark bits are dispersed into eight

transitions, the probability of the output of an existing

transition coinciding with the watermark bit is as high as 1/2,

which results in five existing transitions being reused for

watermarking and only one new transition is added, as shown

in Fig. 1(d). As the newly added transition is well blent with

the existing transitions, when ̂ is applied on the FSM to

detect the watermark, it is hard for an attacker to differentiate

it from others, as indicated by the bold arrow in Fig. 1(e). To

increase the watermark strength and minimize the next state

decoder logic of watermarked design, we also capitalize on the

extra headroom created by the pseudo input variables and free

input combinations of the FSM. In Fig. 1(d), when a new input

variable is introduced, it does not need to be fixed and it can

remain as don’t care in the final watermarked design if it is

not used for the generation of any new transitions. The

synthesized design from Fig. 1(d) has 520, 6.4, and 190.2 units

of area, delay, and power, respectively. The overheads due to

watermarking are only 16.1% on area, 6.7% on timing, and

6.9% on power. The advantage over [14] is discernible.

With these preliminaries, our proposed FSM watermarking

algorithm will be elaborated next.

B. Generation of Watermark and Random Sequence

A meaningful text string, MSG, is first encoded into a

binary string and then encrypted by a provable cryptographic

algorithm with the secret key of the IP owner. If the length

of the encrypted message is too long, a message digest (MD)

algorithm can be used to reduce its length. The resultant

binary bit vector of length m is the watermark,

and .
A keyed one-way pseudorandom number generator

(PNG) is used to generate a sequence,
 , of m

unique integers between 1 and , i.e., i =

1, 2, . . . , m and . The length N of sequence ̂

is determined empirically. The purpose of B is to randomly

disperse the m watermark bits into ̂. If
 such that , then

 ̂ , where ̂ is the jth bit of ̂ ̂. The secure hash

algorithm SHA-1 [21] can be used as an MD as well as in a

keyed one-way PNG for the generation of these two random

sequences, W and B. As it is computationally infeasible to find

a collision of this hash function, the possibility that the same

group of numbers is generated by coincidence is extremely

low without the knowledge of the secret key.

TABLE I

INTERSECTION OF TWO TERNARY VARIABLES

 0 1 -

0 0 Ø 0

1 Ø 1 1

- 0 1 -

Fig. 2. Generation of watermarked output sequence.

C. Watermarking Insertion

The watermark W is inserted into STG(M) by

modifying some of its edges without changing the operational

behavior of M to find a sequence of N consecutive transitions,

 ̂ (̂ ̂ ̂ ̂) , such that each watermark

bit, , will be randomly mapped to one bit in

the sequence, ̂ ̂ ̂ ̂ ̂ .

 ̂ ̂ ̂ ̂ ̂ . The mapping from W to ̂ is

injective but not surjective. The value of each bit ̂ in ̂ can

be determined as follows: if (i– 1) k + j = bl, then ˆyi,j =
wl , e l s e ˆyi,j = “– , ” as shown in Fig. 2.

Given an output ˆYi and a source state ˆsi, the destination

state ˆsi+1 of watermarked transition ˆti will be determined by

an output compatibility check. Two bits, x, y {0, 1, −}, are

compatible if they are of equal value or one of them has a

don’t care value, i.e., x ∩ y _= Ø. This intersection of two

ternary variables is defined in Table I. Likewise, two

alphabets, X and Y are compatible, denoted by X ≡ Y, if none

of the elements in X ∩ Y = {xi ∩ yi} has a null value.

Starting with i = 1, an arbitrary state, ˆs1 Q, is selected.

Let T(ˆsi) be the set of transitions emanating from a state, ˆsi.

A set of transitions C(ˆsi) that is output compatible with ˆYi is

sought, i.e., C(ˆsi) = {ti T (ˆsi)|O(ti) ≡ ˆY1}. To avoid

entering into a deadlock, transitions terminated at a deadlock

state (i.e., state with no fanout) are excluded from C(ˆsi). Four

distinct scenarios are considered for the determination of ˆti.

1) Case 1: there is only one output compatible transition,

|C(ˆsi)| = 1, then ˆti = C(ˆsi) and ˆsi+1 = D(ˆti).

2) Case 2: if more than one output compatible transition are

found, i.e., |C(ˆsi)|> 1, then a transition from C(ˆsi), with the

next state having the highest number of free input

combinations, will be selected asˆti. Its output will be

modified to O(ˆti) = O(ˆti) ˆYi and ˆsi+1 = D(ˆti).

3) Case 3: i f |C (ˆsi) | = 0 , t h e n t h e

f r e e i n p u t c o m b i n a t i o n s o f
ˆsi w i l l b e c o n s i d e r e d . L e t F (ˆsi) =

{X ∈ _|δ (ˆsi,X) = Ø} b e t h e s e t o f f r e e

i n p u t c o m b i n a t i o n s o f ˆsi . F o r

F (ˆsi) _ = Ø , l e t D (ˆsi) = {ˆsj ∈ Q|ˆsj = D (ˆti)

∀ˆti ∈ T (ˆsi)} b e t h e s e t o f

a l l d e s t i n a t i o n s t a t e s o f ˆsi . ˆsi+1 i s

s e t t o t h e s t a t e w i t h t h e
h i g h e s t n u m b e r o f f r e e i n p u t
c o m b i n a t i o n s i n D(ˆsi)
(e x c l u d i n g t h e d e a d l o c k

International Journal of Advanced Scientific Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.2,Issue.12,December.2016

www.ijastems.org Page 57

s t a t e s) u n l e s s D (ˆsi) = Ø . W h e n
D (ˆsi) = Ø, ˆsi+1 i s s e t t o t h e s t a t e

w i t h t h e h i g h e s t n u m b e r o f
f r e e i n p u t c o m b i n a t i o n s i n
STG (M) . I f t h e r e e x i s t s a n e d g e
c o n n e c t i n g ˆsi t o ˆsi+1 i n STG (M) , a
n e w i n p u t / o u t p u t p a i r , I (ˆti) /O (ˆ ti) ,
i s a d d e d f o r t h e t r a n s i t i o n ˆ ti .
O t h e r w i s e , a n e w e d g e
d i r e c t e d f r o m ˆsi t o ˆsi+1 l a b e l e d
w i t h I (ˆti) /O (ˆti) w i l l b e c r e a t e d i n
STG (M) f o r ˆti , a n d O (ˆti) = ˆYi . T h e
d e t e r m i n a t i o n o f I (ˆti) w i l l b e

e x p l a i n e d l a t e r .
4) Case 4: if |C(ˆsi)| = 0 and F(ˆsi) = Ø, then a pseudo input

variable xn+1 needs to be introduced in M and the number of

input variables n is incremented by 1. xn+1 is set to an

unspecified logic value “*” for all existing transitions. A new

edge directed from ˆsi to ˆsi+1 labeled with I(ˆti)/O(ˆti) will be

created for ˆti. ˆsi+1 is set to the state with the highest number

of free inputs in D(ˆsi) or in STG(M) if D(ˆsi) = Ø, and O(ˆti)

= ˆYi. Both symbols “*” and “–” can assume either a logic “0”

or a logic “1” value but there is a subtle difference. “–” is

meant for the currently used input combinations whereas “*”

can be associated with either the used or free input

combinations. A “*” can be construed as a reserved free input

literal as its logic state (“0” or “1”) will only be defined at the

time when some input combinations subsumed by it are freed

to become I(ˆti).

The pseudo codes for the determination of

watermarked transitions are shown in Fig. 3. The input

alphabets for the watermarked transitions found in Cases 3 and

4 are determined by the subroutine Find shown in Fig. 4.

When there is no existing transition with compatible output, as

in Cases 3 and 4, the input alphabet I(ˆti) for O(ˆti) = l[ˆsi,

I(ˆti)] = ˆYi needs to be determined. I(ˆti) is set to one of the

free input combinations of ˆsi if no “*” appears in all the used

input combinations of ˆsi. Otherwise, an alphabet, X I(tu), tu

 T(ˆsi), that contains at least one “*” from the set of used

input combinations of ˆsi will be split into two. Initially, I(ˆti)

= X. A “*” bit in X is selected and assigned a fixed but

randomly generated binary constant, a {0, 1}, while the

corresponding “*” bit in I(ˆti) is assigned its complement ¯a.

Meantime, all the “–” bits in I(ˆti) are replaced by the “*” bits.

For example, if X = “1–*” and a = 0, then it will be split into X

= “1–0” and I(ˆti) = “1*1.”

 The above watermarking process is repeated for i = 2

to N until ˆtN is determined. The residual “*” in the input

alphabets of all edges will be replaced with “–” and the

resultant STG(M) is the watermarked STG(ˆM) and ˆX = I

ˆt1 I _ˆt2_ ・ ・ ・ I _ˆtN_.

If the overhead of watermarked design is not satisfactory, the

entire process can be repeated with an adjusted value of N.

The overall watermark insertion process is shown in Fig. 5.

For each pseudo input variable added, at least 2n−1 potential

free input combinations are created in every state transition,

where n refers to the total number of input variables including

the pseudo variables.

These free input combinations have been consumed

in [14] by fixing the value of each pseudo input variable to be

“0” consistently for all existing transitions and “1”

consistently for the watermarked transition immediately upon

its creation. This has not only increased the complexity of the

decoders, but also made the watermarked transition

discernible from the pseudo inputs. The introduction of

reserved free literal allows the assignments of “*” in the input

alphabets of all transitions to be deferred until some input

combinations subsumed by it are needed to watermark a

transition. The transformation of “–” to “*” in I(ˆti) when a

random assignment is made on “*” serves two important

purposes.

F i g . 3 . D e t e r m i n a t i o n o f
w a t e r m a r k e d t r a n s i t i o n .

F i g . 4 . F i n d i n g i n p u t a l p h a b e t

f o r t h e w a t e r m a r k e d
t r a n s i t i o n .

International Journal of Advanced Scientific Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.2,Issue.12,December.2016

www.ijastems.org Page 58

F i g . 5 . A l g o r i t h m f o r F S M

w a t e r m a r k i n g .

First, it judiciously preserves the don’t care inputs in the

transitions to optimize the design of next state and output

decoders. Second, it allows the same edge to be revisited for

watermarking to maximally exploit the free input

combinations. This will minimize the required number of

pseudo input variables, especially when a long watermark is to

be embedded for a strong authorship proof.

 The number of transitions N has no bearing on the

probability of coincidence but it has impact on the cost of

watermarking. If N is small, the probability of finding

compatible outputs from existing transitions is low and more

design overhead will be incurred. On the other hand, if N is

large, fewer new transitions and pseudo inputs need to be

added which will lower the cost of watermarking, but the code

sequences required to detect the watermark are long. As our

embedding algorithm can run very quickly even for large

FSM, the watermarking process can be repeated for different

N to select the least overhead watermarked design with

reasonable verification code length. The procedure shown in

Fig. 6 is suggested to legitimately limit the number of trials.

Let Awmi denote the area of watermarked FSM with N = Ni at

the ith trial. Ni = Ni−1 •} δi and N1 ≈ m. Ni that is

incremented (or decremented) by δi depends on the extent to

which Awmi−1 is increased (or reduced) over the previous

trial. The standard deviation, σi, of Awm is defined as

Fig. 6. Minimization of FSM watermarking overhead by

adaptation of N.

D. Watermark Detection

To verify the authorship, one needs to run the watermarked

FSM with the input sequence, ˆX = {ˆX1, ˆX2, ・ ・ , ˆXN},

applied on state ˆs1. If the operation halts before N transitions,

the watermark cannot be detected. Otherwise, an output

sequence ˜Y of N × k bits is obtained. The bits indexed by the

set B of m random numbers are selected from ˜Y to form an

ordered sequence ˜W . The authorship is proved if ˜W perfectly

matches or is highly correlated with the watermark W of the IP

owner . S i n c e t h e s c a n c h a i n i s

u s e d a s a m e d i u m t o a i d
a u t h o r s h i p v e r i f i c a t i o n o f t h e
I P e n c a p s u l a t e d i n t h e t e s t
k e r n e l , i t c a n a l s o b e
i n d e p e n d e n t l y p r o t e c t e d b y
[1 6] a n d [1 7] t o b o o s t t h e
c o n f i d e n c e i n p o s i t i v e
w a t e r m a r k i d e n t i f i c a t i o n . B y
w a t e r m a r k i n g t h e s c a n c h a i n
o f w a t e r m a r k e d F S M u s i n g
t h e t e c h n i q u e s p r o p o s e d i n
[1 6] a n d [1 7] , t h e a g g r e s s o r
n e e d s a d d i t i o n a l e f f o r t t o a l s o
s u c c e s s f u l l y t a m p e r o r
r e d e s i g n t h e t e s t s t r u c t u r e t o
p r o v i d e t h e f a u l t c o v e r a g e o f
t h e p i r a t e d I P . F a i l u r e t o
d e t e c t t h e s c a n c h a i n s i g n a t u r e
a l e r t s m a l i c i o u s t a m p e r i n g o r
r e m o v a l o f t h e t e s t s t r u c t u r e i n
a t t e m p t t o m i s a p p r o p r i a t e t h e
p r o t e c t e d I P .

International Journal of Advanced Scientific Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.2,Issue.12,December.2016

www.ijastems.org Page 59

Fig. 7. Example of watermarking on FSM. (a) Original FSM.

(b) Use of existing transition. (c) Introduction of pseudo input

variable and new transition. (d) Watermarked FSM. (e)

Excitation of watermarked transitions.

E. An Illustrative Example

The STG of a simple FSM to be watermarked is shown in Fig.

7(a). It has five states, represented mnemonically as Q = {s1,

s2, s3, s4, s5}. Assume that the encrypted watermark W =

“110110.” The number of output labels to be mapped, N

should be greater than 6/2 = 3 as m = 6 and k = 2. Let N = 7.

Suppose the set of six random numbers between 1 and 14 (k ×

N) generated by the PNG with the IP owner’s secret key is B =

{9, 4, 2, 7, 12, 3}.

Following the algorithm in Fig. 2, since 2(1 −1)+1 = 1 /

B, ˆy1,1 = “–;” since 2(1 − 1) + 2 = 2 = b3, ˆy1,2 = w3 = “0;”

3 = b6⇒ˆy2,1 = w6 = “0;” 4 = b2 ⇒ˆy2,2 = w2 = “1;” 5 / B

⇒ˆy3,1 = “–;” 6 / B ⇒ˆy3,2 = “–;” 7 = b4 ⇒ˆy4,1 = w4 =

“1;” 8 / B ⇒ˆy4,2 = “–;” 9 = b1 ⇒ˆy5,1 = w1 = “1;” 10 / B

⇒ˆy5,2 = “–;” 11 / B ⇒ˆy6,1 = “–;” 12 = b5 ⇒ˆy6,2 = w5 =

“1;” 13 / B ⇒ˆy7,1 = “–” and 14 / B ⇒ˆy7,2 = “–.” Hence,

ˆY = “–0 01– –1–1– –1– –.”

T o v e r i f y t h e e x i s t e n c e o f
w a t e r m a r k W , a n i n p u t
s e q u e n c e ,
ˆX = (“ 0 1 – , ” “ 1 0 0 , ” “ 1 1 – , ” “ 0– 0 , ” “ 1– –

, ” “ 0 0 – , ” “ 0 0 – ”) , “–” ∈ { 0 , 1} , i s

a p p l i e d o n t h e s t a t e s1 . A
b i n a r y s t r e a m ˜ W i s r e t r i e v e d

f r o m t h e b i t p o s i t i o n s , 9 , 4 , 2 ,
7 , 1 2 , 3 o f t h e o u t p u t s e q u e n c e
ˆY . I f ˜W = W = “ 1 1 0 1 1 0 , ” t h e

a u t h o r s h i p i s p r o v e d .

IV. Watermark Resilience Analysis

A. Authorship Credibility

The credibility of the authorship proof can be evaluated by the

probability that an unintended watermark is detected in a

design [13]. Suppose that an arbitrary input sequence exits to

excite N (N = N) consecutive transitions through the

reachable states of a FSM with k output variables. The output

sequence of length N (each output alphabet has k binary bits)

will be one of 2k×N possible solutions. The odds that the

output sequence contains the identical watermark bits at the

positions specified by the author’s signature are

The false positive rate, which is the probability that the

watermark is detected in the output sequence under a different

random input sequence, can be estimated statistically. If there

are NC(τ) output sequences detected with at least τ fraction of

matched watermark bits when NT random input sequences are

applied, then the false positive rate is determined as

Where 0 ≤ τ ≤ 1. To constitute a false positive, τ = 1 since all

bits extracted from the specific positions by the detector need

to be matched exactly with the watermark bits. As τ reduces,

Pλ increases and a threshold of discrimination can be

determined empirically that with certain degree of confidence,

the authenticity of the design can be assured by detecting only

a fraction of the watermark bits. A suitable error correction

scheme can also be considered based on Pλ to correct the

partially corrupted output subsequence due to tampering.

Fig. 8. FSM retiming.

Pc and Pλ are important to repudiate the denial of authorship.

To show that the output sequences excited by the verification

input cannot be obtained by trial-and-error to match the

watermark, the claimant needs only to demonstrate that the

watermark and the watermarked positions in the output

sequence are uniquely generated with a cryptographic one-

way function using a secret key in his/her possession,

provided that Pc is very low and Pλ is low enough for a

sufficiently large number of random tests.

F i g . 9 . W a t e r m a r k i n g w i t h
t h i r d p a r t y k e e p i n g a t i m e -

s t a m p e d s i g n a t u r e .

V. Conclusion

This paper presented a new robust dynamic watermarking

scheme by embedding the authorship information on the

transitions of STG at the behavioral synthesis level. The

proposed method offers a high degree of tamper resistance and

provides easy and noninvasive copy detection. The FSM

watermark is highly resilient to all conceivable watermark

removal attacks. The redundancy in the FSM has been

International Journal of Advanced Scientific Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.2,Issue.12,December.2016

www.ijastems.org Page 60

effectively utilized to minimize the embedding overhead. By

increasing the length of input code sequence for watermark

retrieval and allowing the output compatible transitions to be

revisited to embed different watermark bits, the watermarks

are more randomly dispersed and better concealed in the

existing transitions of FSM. The new approach to the logic

state assignments of pseudo input variables also makes it

infeasible to attack the watermarked FSM by removing the

pseudo inputs. Our experimental results show that the

watermarking incurs acceptably low performance overheads

and possesses very low possibility of coincidence and false

positive rate.

Similar to other FSM watermarking schemes [12]–[14], this

method is not applicable to some ultrahigh speed designs that

do not have a FSM. Fortunately, regular sequential functions

are omnipresent in industrial designs [13], making FSM

watermarking a key research focus for dynamic watermarking.

One recommendation to overcome such limitation is to

augment it with combinational watermarking scheme [5]

applied simultaneously or on different levels of design

abstraction to realize hierarchical watermarking [9], [10]. The

watermarked FSM can be fortified by a scan chain

watermarking [16], [17] to enable the authorship to be easily

verified even after the protected IP has been packaged. While

the robustness of the authorship proof lies mainly on the

watermarked FSM, the auxiliary post-synthesis scan-chain

reordering serves as an intruder-alert for the misappropriation

of sequential design under test and increases the effort level

required to successfully forge a testable IP without being

detected. Even if the scan chain is removed or deranged by the

aggressor, the more robust FSM watermark remains intact and

detectable on chip.

VI. REFERENCES

[1] Intellectual Property Protection Development Working Group, Intellectual

Property Protection: Schemes, Alternatives and Discussion. VSI Alliance,

Aug. 2001, white paper, version 1.1.
[2] I. Hong and M. Potkonjak, “Techniques for intellectual property protection

of DSP designs,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,

vol. 5. May 1998, pp. 3133–3136.
[3] A. T. Abdel-Hamid, S. Tahar, and E. M. Aboulhamid, “A survey on IP

watermarking techniques,” in Design Automation for Embedded Systems, vol.

10. Berlin, Germany: Springer-Verlag, Jul. 2005, pp. 1–17.
[4] D. Kirovski, Y. Y. Hwang, M. Potkonjak, and J. Cong, “Protecting

combinational logic synthesis solutions,” IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst., vol. 25, no. 12, pp. 2687–2696, Dec. 2006.

[5] A. Cui, C. H. Chang, and S. Tahar, “IP watermarking using incremental

technology mapping at logic synthesis level,” IEEE Trans. Comput.- Aided

Design Integr. Circuits Syst., vol. 27, no. 9, pp. 1565–1570, Sep. 2008.
[6] A. Cui and C. H. Chang, “Stego-signature at logic synthesis level for

digital design IP protection,” in Proc. IEEE Int. Symp. Circuits Syst., May

2006, pp. 4611–4614.
[7] A. Cui and C. H. Chang, “Watermarking for IP protection through

template substitution at logic synthesis level,” in Proc. IEEE Int. Symp.

Circuits Syst., May 2007, pp. 3687–3690.
[8] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L. Markov, M.

Potkonjak, P. Tucker, H. Wang, and G. Wolfe, “Constraintbased
watermarking techniques for design IP protection,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 20, no. 10, pp. 1236– 1252, Oct.

2001.
[9] H. J. Kim, W. H. Mangione-Smith, and M. Potkonjak, “Protecting

ownership rights of a lossless image coder through hierarchical atermarking,”

in Proc. Workshop Signal Process. Syst., Oct. 1998, pp.73–82.

