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Abstract : AS CMOS technology scales down to nano scale and memories are combined with an increasing number of 

electronic systems, the soft error rate in memory cells is rapidly increasing. Although single bit upset is a major concern about memory 

reliability, multiple cell upsets (MCUs) have become a serious reliability concern in some memory applications which requires error 

correction. In order to make memory cells as fault-tolerant as possible, some error correction codes (ECCs) have been widely used to 

protect memories. For example, the Bose Chaudhuri Hocquenghem codes, Reed–Solomon codes, and punctured difference set (PDS) 

codes have been used to deal with MCUs in memories. But these codes require more area, power overheads since the encoding and 

decoding circuits are more complex in these complicated codes. In this project due to introduction of butterfly-formed weight 

accumulator (BWA) block to enhance the performance with less power consumption is proposed for efficient error correction.  
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I.INTRODUCTION

 Error detection and correction (EDAC) 

techniques are used to ensure that data is correct and has 

not been corrupted, either by hardware failures or by noise 

occurring during transmission or a data read operation 

from Memory. There are many different error correction 

codes in existence. The reason for the different codes 

being used in different applications has to do with the 

historical development of the data storage, the types of 

data errors occurring, and the overhead associated with 

each of the error detection techniques. The basic concept 

of error detection and correction method is as follow 

1.Networks must be able to transfer data from one system 

to another without data can be corrupted during 

transmission. 

                   For reliable communication, errors must be 

detected and corrected. Any error-correcting code can be 

used for error detection and correction. Error-correcting 

code (ECC) or forward error correction (FEC) code is a 

system of adding redundant data, or parity data, to a 

message, such that it can be recovered by a receiver even 

when a number of errors were introduced, either during 

the process of transmission, or on storage. Since the 

receiver does not have to ask the sender for retransmission 

of the data, a back-channel is not required in forward error 

correction, and it is therefore suitable for simplex 

communication such as broadcasting. Error-correcting 

codes are frequently used in lower-layer communication, 

as well as for reliable storage in media such as CDs, 

DVDs, hard disks, and RAM. The general idea for 

achieving error detection and correction is to add some 

redundancy to a message, which receivers can use to 

check consistency of the delivered message, and to 

recover data determined to be corrupted. . Error-detection 

and correction schemes can be either systematic or non-

systematic: In a systematic scheme, the transmitter sends 

the original data, and attaches a fixed number of check 

bits. which are derived from the data bits by some 

deterministic algorithm. If only error detection is required, 

Data comparison is widely used in computing 

systems to perform many operations such as the tag 

matching in a cache memory and the virtual-to-physical 

address translation in a translation lookaside buffer (TLB). 

Because of such prevalence, it is important to implement 

the comparison circuit with low hardware complexity. 

Besides, the data comparison usually resides in the critical 

path of the components that are devised to increase the 

system performance, e.g., caches and TLBs, whose 

outputs determine the flow of the succeeding operations in 

a pipeline. The circuit, therefore, must be designed to have 

as low latency as possible, or the components will be 

disqualified from serving as accelerators and the overall 

performance of the whole system would be severely 

deteriorated. As recent computers employ error-correcting 

codes (ECCs) to protect data and improve reliabil-ity [1]–

[5], complicated decoding procedure, which must precede 

the data comparison, elongates the critical path and 

exacerbates the complexity overhead. Thus, it becomes 

much harder to meet the above design constraints. Despite 

the need for sophisticated designs as described, the works 

that cope with the problem are not widely known in the 

literature since it has been usually treated within industries 

for their products. Recently, however, [6] triggered the 

attraction of more and more attentions from the academic 

field. 

II EXISTING ARCHITECTURE 

 This section describes the conventional decode-and-

compare archi-tecture and the encode-and-compare 

architecture based on the direct compare method. For the 

sake of concreteness, only the tag matching performed in 

a cache memory is discussed in this brief, but the 

proposed architecture can be applied to similar 

applications without loss of generality. 

A. Decode-and-Compare Architecture 

Let us consider a cache memory where a k-bit tag is stored 

in the form of an n-bit codeword after being encoded by a 

(n, k) code. In the decode-and-compare architecture 

depicted in Fig. 1(a), the n-bit retrieved codeword should 

first be decoded to extract the original k-bit tag. The 

extracted k-bit tag is then compared with the k-bit tag field 

of an incoming address to determine whether the tags are 

matched or not. As the retrieved codeword should go 

through the decoder before being compared with the 

incoming tag, the critical path is too long to be employed 

in a practical cache system designed for high-speed 
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access. Since the decoder is one of the most complicated 

processing elements, in addition, the complexity overhead 

is not negligible. 

 
Fig. 1. SA-based architecture supporting the direct 

compare method 

B. Encode-and-Compare Architecture 

Note that decoding is usually more complex and takes 

more time than encoding as it encompasses a series of 

error detection or syndrome calculation, and error 

correction [7]. The implemen-tation results in [8] support 

the claim. To resolve the drawbacks of the decode-and-

compare architecture, therefore, the decoding of a 

retrieved codeword is replaced with the encoding of an 

incoming tag in the encode-and-compare architecture 

More precisely, a k-bit incoming tag is first encoded to the 

corresponding n-bit codeword X and compared with an n-

bit retrieved codeword Y as shown in Fig. 1(b).  

 
Fig. 2. (a) Decode-and-compare architecture and (b) 

encode-and-compare architecture. 

The comparison is to examine how many bits the two 

codewords differ, not to check if the two codewords are 

exactly equal to each other. For this, we compute the 

Hamming distance d between the two codewords and 

classify the cases according to the range of d. Let tmax and 

rmax denote the numbers of maximally correctable and 

detectable errors, respectively. The cases are summarized 

as follows. 

 
1  If d = 0, X matches Y exactly. 

2  If 0 < d ≤ tmax, X will match Y provided at most 

tmax errors in Y are corrected. 

3)        If tmax < d ≤ rmax, Y has detectable but 

uncorrectable errors. In this case, the cache may issue a 

system fault so as to make the central processing unit take 

a proper action. 

4)         If rmax < d, X does not match Y . 

Assuming that the incoming address has no errors, we can 

regard the two tags as matched if d is in either the first or 

the second ranges. In this way, while maintaining the 

error-correcting capability, the architecture can remove 

the decoder from its critical path at the cost of an encoder 

being newly introduced. Note that the encoder is, in 

general, much simpler than the decoder, and thus the 

encoding cost is significantly less than the decoding cost. 

Since the above method needs to compute the Hamming 

dis-tance, [6] presented a circuit dedicated for the 

computation. The circuit shown in Fig. 2 first performs 

XOR operations for every pair of bits in X and Y so as to 

generate a vector representing the bitwise difference of the 

two codewords. The following half adders (HAs) are used 

to count the number of 1’s in two adjacent bits in the 

vector. The numbers of 1’s are accumulated by passing 

through the following SA tree. In the SA tree, the 

accumulated value z is saturated to rmax + 1 if it exceeds 

rmax. More precisely, given inputs x and y, z can be 

expressed as follows: 

 
The final accumulated value indicates the range of d. As 

the compul-sory saturation necessitates additional logic 

circuitry, the complexity of a SA is higher than the 

conventional adder. 

 

III. PROPOSED ARCHITECTURE 

This section presents a new architecture that can reduce 

the latency and complexity of the data comparison by 

using the characteristics of  

 
Fig. 3. Timing diagram of the tag match in (a) direct 

compare method [6] and (b) proposed architecture 
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Fig. 4. Systematic representation of an ECC codeword. 

 
Fig. 5. Proposed architecture optimized for systematic 

codewords. 

systematic codes. In addition, a new processing element is 

presented to reduce the latency and complexity further. 

A. Datapath Design for Systematic Codes 

In the SA-based architecture [6], the comparison of two 

codewords is invoked after the incoming tag is encoded. 

Therefore, the critical path consists of a series of the 

encoding and the n-bit comparison as shown in Fig. 3(a). 

However, [6] did not consider the fact that, in practice, the 

ECC codeword is of a systematic form in which the data 

and parity parts are completely separated as shown in Fig. 

4. As the data part of a systematic codeword is exactly the 

same as the incom-ing tag field, it is immediately 

available for comparison while the parity part becomes 

available only after the encoding is completed. Grounded 

on this fact, the comparison of the k-bit tags can be started 

before the remaining (n–k)-bit comparison of the parity 

bits. In the proposed architecture, therefore, the encoding 

process to generate the parity bits from the incoming tag is 

performed in parallel with the tag comparison, reducing 

the overall latency . 

At the 64-bit word level, parity-checking and error 

correction code need constant range of additional bits. In 

general, error correction code will increase the reliability 

of any computing or telecommunications system (or a part 

of a system) while not adding abundant value. Reed-

Solomon codes square measure normally implemented; 

they are ready to notice and restore "erased" bits 

additionally as incorrect bits.  

Hamming Distance: 
 In information theory, the performing distance between 2 

strings of equal length is that the variety of positions at 

that the corresponding symbols area unit totally different. 

In our own way, it measures the minimum variety of 

substitutions needed to vary one string into the other, or 

the minimum variety of errors that might have 

transformed one string into the other. For binary strings a 

and b the Hamming distance is adequate the number of 

one’s in an exceedingly a XOR b. The mathematical space 

of length-n binary strings, with the Hamming distance, is 

thought because the Hamming cube; it's equivalent as a 

mathematical space to the set of distances between 

vertices in an exceedingly hypercube graph. One also can 

read a binary string of length n as a vector in Rn by 

treating every symbol within the string as a real 

coordinate; with this embedding, the strings are formed 

the vertices of associate n-dimensional hypercube, and 

also the Hamming distance of the strings is admire the 

Manhattan distance between the vertices. The Hamming 

Distance may be a number used to denote the distinguish 

between 2 binary strings. It’s a little portion of a broader 

set of formulas utilized in info analysis. Specifically, 

Hamming's formulas enable computers to detect and 

correcting error on their own. The Hamming Code earned 

Richard Hamming the Eduard Rheim Award of feat in 

Technology in 1996, 2 years before his death. Hamming's 

additions to info technology are utilized in such 

innovations as modems and compact discs.  

Step 1: Ensure the 2 strings area unit of equal length. The 

hamming distance will solely be calculated between 2 

strings of equal length. String 1: "1001 0010 1101" String 

2: "1010 0010 0010".  

Step 2: Compare the primary 2 bits in every string. If 

they're identical, record a "0" for that bit. If they're totally 

different, record a "1" for that bit. During this case, the 

first bit of both strings is "1," thus record a "0" for the 

primary bit.  

Step 3: Compare every bit in succession and record either 

"1" or "0" as acceptable. String 1: "1001 0010 1101" 

String 2: "1010 0010 0010" Record: "0011 0000 1111".  

Step 4: Add all one’s and zeros within the record along to 

get the Hamming distance. Hamming distance = 

0+0+1+1+0+0+0+0+1+1+1+1 = 6. 

B. Architecture for Computing the Hamming Distance 

The proposed architecture grounded on the datapath 

design is shown in Fig. 5. It contains multiple butterfly-

formed weight accumu-lators (BWAs) proposed to 

improve the latency and complexity of the Hamming 

distance computation. The basic function of the BWA is 

to count the number of 1’s among its input bits. It consists 
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of multiple stages of HAs as shown in Fig. 6(a), where 

each output bit of a HA  

 
Fig. 6. Proposed BWA. (a) General structure and (b) new 

structure revised for the matching of ECC-protected data. 

Note that sum-bit lines are dotted for visibility. 

is associated with a weight. The HAs in a stage are 

connected in a butterfly form so as to accumulate the carry 

bits and the sum bits of the upper stage separately. In 

other words, both inputs of a HA in a stage, except the 

first stage, are either carry bits or sum bits computed in 

the upper stage. This connection method leads to a 

property that if an output bit of a HA is set, the number of 

1’s among the bits in the paths reaching the HA is equal to 

the weight of the output bit. In Fig. 6(a), for example, if 

the carry bit of the gray-colored HA is set, the number of 

1’s among the associated input bits, i.e., A, B, C, and D, is 

2. At the last stage of Fig. 6(a), the number of 1’s among 

the input bits, d, can be calculated as 

d = 8I + 4 (J + K + M) + 2 (L + N + O) + P 

Since what we need is not the precise Hamming distance 

but the range it belongs to, it is possible to simplify the 

circuit. When rmax = 1, for example, two or more than two 

1’s among the input bits can be regarded as the same case 

that falls in the fourth range. In that case, we can replace 

several HAs with a simple OR-gate tree as shown in Fig. 

6(b). This is an advantage over the SA that resorts to the 

compulsory saturation expressed in (1). 

Note that in Fig. 6, there is no overlap between 

any pair of two carry-bit lines or any pair of two sum-bit 

lines. As the overlaps exist only between carry-bit lines 

and sum-bit lines, it is not hard to resolve overlaps in the 

contemporary technology that provides multiple routing 

layers no matter how many bits a BWA takes. 

We now explain the overall architecture in more 

detail. Each XOR stage in Fig. 5 generates the bitwise 

difference vector for either data bits or parity bits, and the 

following processing elements count the number of 1’s in 

the vector, i.e., the Hamming distance. Each BWA at the 

first level is in the revised form shown in Fig. 6(b), and 

generates an output from the OR-gate tree and several 

weight bits from the HA trees. In the interconnection, 

such outputs are fed into their associated processing 

elements at the second level. The output of the OR-gate 

tree is connected to the subsequent OR-gate tree at the 

second level, and the remaining weight bits are connected 

to the second level BWAs according to their weights. 

More precisely, the bits of weight w are connected to the 

BWA responsible for w-weight inputs. Each BWA at the 

second level is associated with a weight of a power of two 

that is less than or equal to Pmax, where Pmax is the largest 

power of two that is not greater than rmax + 1. As the 

weight bits associated with the fourth range are all ORed 

in the revised BWAs, there is no need to deal with the 

powers of two that are larger than Pmax.For example, let us 

consider a simple (8, 4) single-error correction double-

error detection code 

 
Fig. 7. First and second level circuits for a (8, 4) code 
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TABLE I 

Truth Table Of The Decision Unit F Or A (8, 4) CODE 

 
The corresponding first and second level circuits 

are shown in Fig. 7. Note that the encoder and XOR banks 

are not drawn in Fig. 7 for the sake of simplicity. Since 

rmax = 2, Pmax = 2 and there are only two BWAs dealing 

with weights 2 and 1 at the second level. As the bits of 

weight 4 fall in the fourth range, they are ORed. The 

remaining bits associated with weight 2 or 1 are connected 

to their corresponding BWAs. Note that the 

interconnection induces no hardware complexity, since it 

can be achieved by a bunch of hard wiring. 

 

IV. RESULTS 

RTL Schematic: 

 
 

TechnologySchematic: 

 

Simulated Waveform: 

 
 

V.CONCLUSION 

To reduce the latency and hardware complexity, 

a new architecture has been presented for matching the 

data protected with an ECC using multiplexer based 

encoding.  As the proposed architecture is effective in 

reducing the latency as well as the complexity 

considerably, it can be regarded as a promising solution 

for the comparison of ECC-protected data technique. The 

power consumption is drastically reduced from 

0.25274mw to 0.1875mw with a slight increase in latency. 

The functionality is verified using ISE simulator and the 

synthesis is carried out using XILINX synthesizer by 

developing the RTL using VERILOG HDL. 
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