
International Journal of Advanced Scientific Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.2,Issue.10,October.2016

www.ijastems.org Page 33

Power Efficient Error Detection Code

Architecture for Encoded Data Matching

1 . Kathroju Sindhuja,M.Tech (VLSI&ES),2 .M.S Shyam, M.Tech (VLSI&ES), Assistant Professor ,

1,2. ECE Department,ST.MARY’S College of Engineering & Technology(Formely ASEC)

Abstract : AS CMOS technology scales down to nano scale and memories are combined with an increasing number of

electronic systems, the soft error rate in memory cells is rapidly increasing. Although single bit upset is a major concern about memory

reliability, multiple cell upsets (MCUs) have become a serious reliability concern in some memory applications which requires error

correction. In order to make memory cells as fault-tolerant as possible, some error correction codes (ECCs) have been widely used to

protect memories. For example, the Bose Chaudhuri Hocquenghem codes, Reed–Solomon codes, and punctured difference set (PDS)

codes have been used to deal with MCUs in memories. But these codes require more area, power overheads since the encoding and

decoding circuits are more complex in these complicated codes. In this project due to introduction of butterfly-formed weight

accumulator (BWA) block to enhance the performance with less power consumption is proposed for efficient error correction.

KEYWORDS: Error correction codes, BWA, XILINX ISE, VERILOG

I.INTRODUCTION

 Error detection and correction (EDAC)

techniques are used to ensure that data is correct and has

not been corrupted, either by hardware failures or by noise

occurring during transmission or a data read operation

from Memory. There are many different error correction

codes in existence. The reason for the different codes

being used in different applications has to do with the

historical development of the data storage, the types of

data errors occurring, and the overhead associated with

each of the error detection techniques. The basic concept

of error detection and correction method is as follow

1.Networks must be able to transfer data from one system

to another without data can be corrupted during

transmission.

 For reliable communication, errors must be

detected and corrected. Any error-correcting code can be

used for error detection and correction. Error-correcting

code (ECC) or forward error correction (FEC) code is a

system of adding redundant data, or parity data, to a

message, such that it can be recovered by a receiver even

when a number of errors were introduced, either during

the process of transmission, or on storage. Since the

receiver does not have to ask the sender for retransmission

of the data, a back-channel is not required in forward error

correction, and it is therefore suitable for simplex

communication such as broadcasting. Error-correcting

codes are frequently used in lower-layer communication,

as well as for reliable storage in media such as CDs,

DVDs, hard disks, and RAM. The general idea for

achieving error detection and correction is to add some

redundancy to a message, which receivers can use to

check consistency of the delivered message, and to

recover data determined to be corrupted. . Error-detection

and correction schemes can be either systematic or non-

systematic: In a systematic scheme, the transmitter sends

the original data, and attaches a fixed number of check

bits. which are derived from the data bits by some

deterministic algorithm. If only error detection is required,

Data comparison is widely used in computing

systems to perform many operations such as the tag

matching in a cache memory and the virtual-to-physical

address translation in a translation lookaside buffer (TLB).

Because of such prevalence, it is important to implement

the comparison circuit with low hardware complexity.

Besides, the data comparison usually resides in the critical

path of the components that are devised to increase the

system performance, e.g., caches and TLBs, whose

outputs determine the flow of the succeeding operations in

a pipeline. The circuit, therefore, must be designed to have

as low latency as possible, or the components will be

disqualified from serving as accelerators and the overall

performance of the whole system would be severely

deteriorated. As recent computers employ error-correcting

codes (ECCs) to protect data and improve reliabil-ity [1]–

[5], complicated decoding procedure, which must precede

the data comparison, elongates the critical path and

exacerbates the complexity overhead. Thus, it becomes

much harder to meet the above design constraints. Despite

the need for sophisticated designs as described, the works

that cope with the problem are not widely known in the

literature since it has been usually treated within industries

for their products. Recently, however, [6] triggered the

attraction of more and more attentions from the academic

field.

II EXISTING ARCHITECTURE

 This section describes the conventional decode-and-

compare archi-tecture and the encode-and-compare

architecture based on the direct compare method. For the

sake of concreteness, only the tag matching performed in

a cache memory is discussed in this brief, but the

proposed architecture can be applied to similar

applications without loss of generality.

A. Decode-and-Compare Architecture

Let us consider a cache memory where a k-bit tag is stored

in the form of an n-bit codeword after being encoded by a

(n, k) code. In the decode-and-compare architecture

depicted in Fig. 1(a), the n-bit retrieved codeword should

first be decoded to extract the original k-bit tag. The

extracted k-bit tag is then compared with the k-bit tag field

of an incoming address to determine whether the tags are

matched or not. As the retrieved codeword should go

through the decoder before being compared with the

incoming tag, the critical path is too long to be employed

in a practical cache system designed for high-speed

International Journal of Advanced Scientific Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.2,Issue.10,October.2016

www.ijastems.org Page 34

access. Since the decoder is one of the most complicated

processing elements, in addition, the complexity overhead

is not negligible.

Fig. 1. SA-based architecture supporting the direct

compare method

B. Encode-and-Compare Architecture

Note that decoding is usually more complex and takes

more time than encoding as it encompasses a series of

error detection or syndrome calculation, and error

correction [7]. The implemen-tation results in [8] support

the claim. To resolve the drawbacks of the decode-and-

compare architecture, therefore, the decoding of a

retrieved codeword is replaced with the encoding of an

incoming tag in the encode-and-compare architecture

More precisely, a k-bit incoming tag is first encoded to the

corresponding n-bit codeword X and compared with an n-

bit retrieved codeword Y as shown in Fig. 1(b).

Fig. 2. (a) Decode-and-compare architecture and (b)

encode-and-compare architecture.

The comparison is to examine how many bits the two

codewords differ, not to check if the two codewords are

exactly equal to each other. For this, we compute the

Hamming distance d between the two codewords and

classify the cases according to the range of d. Let tmax and

rmax denote the numbers of maximally correctable and

detectable errors, respectively. The cases are summarized

as follows.

1 If d = 0, X matches Y exactly.

2 If 0 < d ≤ tmax, X will match Y provided at most

tmax errors in Y are corrected.

3) If tmax < d ≤ rmax, Y has detectable but

uncorrectable errors. In this case, the cache may issue a

system fault so as to make the central processing unit take

a proper action.

4) If rmax < d, X does not match Y .

Assuming that the incoming address has no errors, we can

regard the two tags as matched if d is in either the first or

the second ranges. In this way, while maintaining the

error-correcting capability, the architecture can remove

the decoder from its critical path at the cost of an encoder

being newly introduced. Note that the encoder is, in

general, much simpler than the decoder, and thus the

encoding cost is significantly less than the decoding cost.

Since the above method needs to compute the Hamming

dis-tance, [6] presented a circuit dedicated for the

computation. The circuit shown in Fig. 2 first performs

XOR operations for every pair of bits in X and Y so as to

generate a vector representing the bitwise difference of the

two codewords. The following half adders (HAs) are used

to count the number of 1’s in two adjacent bits in the

vector. The numbers of 1’s are accumulated by passing

through the following SA tree. In the SA tree, the

accumulated value z is saturated to rmax + 1 if it exceeds

rmax. More precisely, given inputs x and y, z can be

expressed as follows:

The final accumulated value indicates the range of d. As

the compul-sory saturation necessitates additional logic

circuitry, the complexity of a SA is higher than the

conventional adder.

III. PROPOSED ARCHITECTURE

This section presents a new architecture that can reduce

the latency and complexity of the data comparison by

using the characteristics of

Fig. 3. Timing diagram of the tag match in (a) direct

compare method [6] and (b) proposed architecture

International Journal of Advanced Scientific Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.2,Issue.10,October.2016

www.ijastems.org Page 35

Fig. 4. Systematic representation of an ECC codeword.

Fig. 5. Proposed architecture optimized for systematic

codewords.

systematic codes. In addition, a new processing element is

presented to reduce the latency and complexity further.

A. Datapath Design for Systematic Codes

In the SA-based architecture [6], the comparison of two

codewords is invoked after the incoming tag is encoded.

Therefore, the critical path consists of a series of the

encoding and the n-bit comparison as shown in Fig. 3(a).

However, [6] did not consider the fact that, in practice, the

ECC codeword is of a systematic form in which the data

and parity parts are completely separated as shown in Fig.

4. As the data part of a systematic codeword is exactly the

same as the incom-ing tag field, it is immediately

available for comparison while the parity part becomes

available only after the encoding is completed. Grounded

on this fact, the comparison of the k-bit tags can be started

before the remaining (n–k)-bit comparison of the parity

bits. In the proposed architecture, therefore, the encoding

process to generate the parity bits from the incoming tag is

performed in parallel with the tag comparison, reducing

the overall latency .

At the 64-bit word level, parity-checking and error

correction code need constant range of additional bits. In

general, error correction code will increase the reliability

of any computing or telecommunications system (or a part

of a system) while not adding abundant value. Reed-

Solomon codes square measure normally implemented;

they are ready to notice and restore "erased" bits

additionally as incorrect bits.

Hamming Distance:
 In information theory, the performing distance between 2

strings of equal length is that the variety of positions at

that the corresponding symbols area unit totally different.

In our own way, it measures the minimum variety of

substitutions needed to vary one string into the other, or

the minimum variety of errors that might have

transformed one string into the other. For binary strings a

and b the Hamming distance is adequate the number of

one’s in an exceedingly a XOR b. The mathematical space

of length-n binary strings, with the Hamming distance, is

thought because the Hamming cube; it's equivalent as a

mathematical space to the set of distances between

vertices in an exceedingly hypercube graph. One also can

read a binary string of length n as a vector in Rn by

treating every symbol within the string as a real

coordinate; with this embedding, the strings are formed

the vertices of associate n-dimensional hypercube, and

also the Hamming distance of the strings is admire the

Manhattan distance between the vertices. The Hamming

Distance may be a number used to denote the distinguish

between 2 binary strings. It’s a little portion of a broader

set of formulas utilized in info analysis. Specifically,

Hamming's formulas enable computers to detect and

correcting error on their own. The Hamming Code earned

Richard Hamming the Eduard Rheim Award of feat in

Technology in 1996, 2 years before his death. Hamming's

additions to info technology are utilized in such

innovations as modems and compact discs.

Step 1: Ensure the 2 strings area unit of equal length. The

hamming distance will solely be calculated between 2

strings of equal length. String 1: "1001 0010 1101" String

2: "1010 0010 0010".

Step 2: Compare the primary 2 bits in every string. If

they're identical, record a "0" for that bit. If they're totally

different, record a "1" for that bit. During this case, the

first bit of both strings is "1," thus record a "0" for the

primary bit.

Step 3: Compare every bit in succession and record either

"1" or "0" as acceptable. String 1: "1001 0010 1101"

String 2: "1010 0010 0010" Record: "0011 0000 1111".

Step 4: Add all one’s and zeros within the record along to

get the Hamming distance. Hamming distance =

0+0+1+1+0+0+0+0+1+1+1+1 = 6.

B. Architecture for Computing the Hamming Distance

The proposed architecture grounded on the datapath

design is shown in Fig. 5. It contains multiple butterfly-

formed weight accumu-lators (BWAs) proposed to

improve the latency and complexity of the Hamming

distance computation. The basic function of the BWA is

to count the number of 1’s among its input bits. It consists

International Journal of Advanced Scientific Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.2,Issue.10,October.2016

www.ijastems.org Page 36

of multiple stages of HAs as shown in Fig. 6(a), where

each output bit of a HA

Fig. 6. Proposed BWA. (a) General structure and (b) new

structure revised for the matching of ECC-protected data.

Note that sum-bit lines are dotted for visibility.

is associated with a weight. The HAs in a stage are

connected in a butterfly form so as to accumulate the carry

bits and the sum bits of the upper stage separately. In

other words, both inputs of a HA in a stage, except the

first stage, are either carry bits or sum bits computed in

the upper stage. This connection method leads to a

property that if an output bit of a HA is set, the number of

1’s among the bits in the paths reaching the HA is equal to

the weight of the output bit. In Fig. 6(a), for example, if

the carry bit of the gray-colored HA is set, the number of

1’s among the associated input bits, i.e., A, B, C, and D, is

2. At the last stage of Fig. 6(a), the number of 1’s among

the input bits, d, can be calculated as

d = 8I + 4 (J + K + M) + 2 (L + N + O) + P

Since what we need is not the precise Hamming distance

but the range it belongs to, it is possible to simplify the

circuit. When rmax = 1, for example, two or more than two

1’s among the input bits can be regarded as the same case

that falls in the fourth range. In that case, we can replace

several HAs with a simple OR-gate tree as shown in Fig.

6(b). This is an advantage over the SA that resorts to the

compulsory saturation expressed in (1).

Note that in Fig. 6, there is no overlap between

any pair of two carry-bit lines or any pair of two sum-bit

lines. As the overlaps exist only between carry-bit lines

and sum-bit lines, it is not hard to resolve overlaps in the

contemporary technology that provides multiple routing

layers no matter how many bits a BWA takes.

We now explain the overall architecture in more

detail. Each XOR stage in Fig. 5 generates the bitwise

difference vector for either data bits or parity bits, and the

following processing elements count the number of 1’s in

the vector, i.e., the Hamming distance. Each BWA at the

first level is in the revised form shown in Fig. 6(b), and

generates an output from the OR-gate tree and several

weight bits from the HA trees. In the interconnection,

such outputs are fed into their associated processing

elements at the second level. The output of the OR-gate

tree is connected to the subsequent OR-gate tree at the

second level, and the remaining weight bits are connected

to the second level BWAs according to their weights.

More precisely, the bits of weight w are connected to the

BWA responsible for w-weight inputs. Each BWA at the

second level is associated with a weight of a power of two

that is less than or equal to Pmax, where Pmax is the largest

power of two that is not greater than rmax + 1. As the

weight bits associated with the fourth range are all ORed

in the revised BWAs, there is no need to deal with the

powers of two that are larger than Pmax.For example, let us

consider a simple (8, 4) single-error correction double-

error detection code

Fig. 7. First and second level circuits for a (8, 4) code

International Journal of Advanced Scientific Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.2,Issue.10,October.2016

www.ijastems.org Page 37

TABLE I

Truth Table Of The Decision Unit F Or A (8, 4) CODE

The corresponding first and second level circuits

are shown in Fig. 7. Note that the encoder and XOR banks

are not drawn in Fig. 7 for the sake of simplicity. Since

rmax = 2, Pmax = 2 and there are only two BWAs dealing

with weights 2 and 1 at the second level. As the bits of

weight 4 fall in the fourth range, they are ORed. The

remaining bits associated with weight 2 or 1 are connected

to their corresponding BWAs. Note that the

interconnection induces no hardware complexity, since it

can be achieved by a bunch of hard wiring.

IV. RESULTS

RTL Schematic:

TechnologySchematic:

Simulated Waveform:

V.CONCLUSION

To reduce the latency and hardware complexity,

a new architecture has been presented for matching the

data protected with an ECC using multiplexer based

encoding. As the proposed architecture is effective in

reducing the latency as well as the complexity

considerably, it can be regarded as a promising solution

for the comparison of ECC-protected data technique. The

power consumption is drastically reduced from

0.25274mw to 0.1875mw with a slight increase in latency.

The functionality is verified using ISE simulator and the

synthesis is carried out using XILINX synthesizer by

developing the RTL using VERILOG HDL.

REFERENCES

[1] Byeong Yong Kong, Jihyuck Jo, Hyewon Jeong, Mina

Hwang, Soyoung Cha, Bongjin Kim, and In-Cheol Park, “Low-

Complexity Low-Latency Architecture for Matching of Data

EncodedWith Hard Systematic Error-Correcting Codes” , IEEE

TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 7, JULY

2014.

[2] J. Chang, M. Huang, J. Shoemaker, J. Benoit, S.-L. Chen, W.

Chen, S. Chiu, R. Ganesan, G. Leong, V. Lukka, S. Rusu, and D.

Srivastava, “The 65-nm 16-MB shared on-die L3 cache for the

dual-core Intel xeon processor 7100 series,” IEEE J. Solid-State

Circuits, vol. 42, no. 4,pp. 846–852, Apr. 2007.

[3] J. D. Warnock, Y.-H. Chan, S. M. Carey, H. Wen, P. J.

Meaney, G. Gerwig, H. H. Smith, Y. H. Chan, J. Davis, P.

Bunce, A. Pelella, D. Rodko, P. Patel, T. Strach, D. Malone, F.

Malgioglio, J. Neves, D. L. Rude, and W. V. Huott “Circuit and

physical design implementation of the microprocessor chip for

the zEnterprise system,” IEEE J. Solid-State Circuits, vol. 47,

no. 1, pp. 151–163, Jan. 2012.

[4] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa, K.

Morita, T. Muta, and T. Motokurumada, S. Okada, H.

Yamashita, and Y. Satsukawa, “A 1.3 GHz fifth generation

SPARC64 microprocessor,” in IEEE ISSCC. Dig. Tech. Papers,

Feb. 2003, pp. 246–247.

[5] M. Tremblay and S. Chaudhry, “A third-generation 65nm 16-

core 32-thread plus 32-scout-thread CMT SPARC

processor,” in ISSCC. Dig.Tech. Papers, Feb. 2008, pp. 82–83.

[6] AMD Inc. (2010). Family 10h AMD Opteron Processor

Product Data Sheet, Sunnyvale, CA, USA [Online].

Available:http://support.amd.com/us/Processor_TechDocs/4003

6.pdf

[7] W. Wu, D. Somasekhar, and S.-L. Lu, “Direct compare of

information coded with error-correcting codes,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 11, pp. 2147–

2151,Nov. 2012.

[8] S. Lin and D. J. Costello, Error Control Coding:

Fundamentals and Applications, 2nd ed. Englewood Cliffs, NJ,

USA: Prentice-Hall, 2004.

