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Abstract— The present work of this paper analyses with the effect of heat and mass transfer on free convection flow near an 

accelerated infinite vertical plate in the presence of transverse magnetic field. The surface is maintained at linear temperature and 
concentration variations and time dependent wall suction is assumed to occur at the permeable surface. The system of equations such as 
equation of momentum, energy, mass diffusion has been transformed by usual transformation into a non-dimensional form. Some 
applications of practical interest are discussed for deferent types of plate motions. The governing equations are solved by the use of 
Laplace transformation technique and the results obtained are presented graphically for (both primary and secondary) the velocity 
distribution for the influence of the various parameters like hall parameter, Hartmann number, rotation parameter, Schmidt number, 
Prandtl number, thermal Grashof number, mass Grashof number. The temperature and concentration profiles are presented 
graphically. 
 

Index Terms— Hall Effect, Isothermal, Temperature Diffusion, Mass Diffusion, Vertical Plate, Rotating fluid. 
 
I. INTRODUCTION 
 
The natural convection heat transfer from a vertical 

plate to a fluid has applications in many industrial 
processes. Practical applications are found in heat 
exchangers. The study of convection with heat-mass 
transfer is very useful in the fields as Chemistry, 
agriculture and oceanography. Heat and mass transfer 
from a vertical plate have been studied by several authors. 
An exact solution for the current is induced in the 
direction normal to both electric and magnetic fields. This 
phenomenon is known as the Hall Effect. 

 
Aboeldahabn et al. [1] have analyzed Hall current 

effect on magneto hydrodynamic free convection flow 
past a semi infinite vertical plate with mass transfer. 
Acharya [2] studied Hall Effect with simultaneous thermal 
and mass diffusion on unsteady hydro magnetic flow near 
an accelerated vertical plate. Basanth Kumar Jha and 
Ravindra Prasad [3] presented free convection and mass 
transfer effects on the flow past an accelerated vertical 
plate with heat source. Chen [4] studied heat and mass 
transfer with variable wall temperature and concentration. 
Das et al. [5] studied radiation effects on flow past an 
impulsively started vertical infinite plate. Elbashbeshy [6] 
discussed heat and mass transfer along a vertical plate 
with variable surface tension and concentration in the 

presence of the magnetic field. Hetnarski [7] analyzed an 
algorithm for generating some inverse Laplace transforms 
of exponential form. Ganesh and Pilani [8] rendered Finite 
difference analysis of unsteady natural convection MHD 
past an inclined plate with variable surface heat and mass 
flux. Kafousias and Raptis [9]analyzed Mass transfer and 
free convection effects on the flow past an accelerated 
vertical infinite plate with variable suction or injection. 
Muthucumaraswamy [10] investigated the interaction of 
thermal radiation on vertical oscillating plate with variable 
temperature and mass diffusion. Raptisa et al. [11] studied 
hydro magnetic free convection flow past an accelerated 
vertical infinite plate with variable suction and heat flux. 
Sattar [12] rendered free convection and mass transfer 
flow through a porous medium past an infinite vertical 
porous plate with time dependent temperature and 
concentration. Takhar [13] investigated unsteady flow free 
convective flow over an infinite vertical porous plate due 
to the combined effects of thermal and mass diffusion, 
magnetic field and Hall current.  
 

The objective of the present paper is to study the exact 
solution of Hall Effect on MHD flow past an accelerated 
infinite vertical plate with uniform mass diffusion, 
numerical methods and the developments in computer 
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technology methods play an important role in solving the 
partial differential equations by Laplace-transform 
technique. The solutions are in terms of exponential and 
complementary error functions. The various parameters 
entering into the problem like hall parameter, rotation 
parameter, radiation parameter, Hartmann number, 
thermal Grashof number, mass Grashof number, Schmidt 
number, temperature are investigated and the results are 
shown with the help of their graphical representations. 

 
II.   FORMULATION OF THE PROBLEM 

AND ITS SOLUTION 
The unsteady flow of an incompressible 

andelectrically conducting viscous fluid past an infinite 
vertical plate with variable temperature and variable mass 
diffusion has been considered. Relative to the rotating 
fluid, the plate is impulsively started from rest and set into 
motion with uniform acceleration in its own plane. When, 
the fluid and the plate rotate as a rigid body with a 
uniform angular velocity Ω′ about z-axis in the presence 
of an imposed uniform transverse magnetic field  0B  

normal to the plate. Also, no external electric field is 
applied, so the effect of polarization of the magnetic field 
is negligible. Initially, for time 0t , the plate and fluid 

are at the same temperature 
T  and the mass 

concentration 
C . At time 0>t , the plate temperature 

and the mass concentration is raised to wT   and wC  . As 

the plate is infinitely long, the fluid velocity components 
and temperature distribution are functions of z and t only. 
Under the above assumptions as well as Boussinesq’s 

approximation, the equations of conservation of 
Momentum, Energy and Concentration governing the free 
convection boundary layer flow past an exponentially 
accelerated vertical plate can be expressed as: 

 
Equation of Momentum: 
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Equation of Energy: 
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Equation of diffusion: 
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Since there is no large velocity gradient here, the viscous 

term in Equation (1) vanishes for small and hence for the 
outer flow, beside there is no magnetic field along x-
direction gradient, so we have 
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By eliminating the pressure term from Equations (1) and 
(5), we obtain 
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The Boussinesq approximation gives             
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On using (7) in the equation (6) and noting that 
  is 

approximately equal to 1, the momentum equation reduces 
to 
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The generalized Ohm's law, on taking Hall currents into 
account and neglecting ion-slip and thermo-electric effect, 
is    
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The equation (9) gives 

0vBmjj yx                                                    (10)                                                                                                                                                                                                          

     0uBmjj xy                                                  (11)                                                                                                                                                                                                

where eem   is the Hall parameter. Solving (10) and 

(11) for xj  and yj , we have  
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On the use of (12) and (13), the momentum equations (8) 
and (2) become 
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The initial and boundary conditions are given by 
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The local radiant for the case of an optically thin gray gas 
is expressed by 
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It is assumed that the temperature differences within the 

flow are sufficiently small such that 4T   may be 
expressed as a linear function of the temperature. This is 

accomplished by expanding 4T   in a Taylor series about 


T  and neglecting higher-order terms, thus 
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By using equations (17) and (18), equation (3) reduces to 
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Let us introducing the following non-dimensional 
quantities 
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Using these boundary conditions in above equations, we 
obtain the following dimensionless form of the governing 
equations  
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The boundary conditions for corresponding order are 
0t , 0U , 0V , ,0 0C  for all Z  

     0t , 1U , 0V , t , tC  at 0Z                                                                                                                             

              0U , 0V , 0 0C  as Z                        

                                                                                       (24) 

Now equations (20) & (21) and boundary conditions (24) 
can be combined to give 
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The initial and boundary conditions in non-dimensional 
quantities are 

0t , 0F , ,0 0C  for all Z     

0t , 1F , t , tC  at 0Z                                                                                                                     

                0F , 0 0C  as Z        (28) 
Exact solution for the fluid temperature and concentration 
of (26), (27) is expressed in the following form by taking 
inverse Laplace transform of solution as 
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The equations (25), (26), (27), subject to the boundary 
conditions (28), are solved by the usual Laplace-transform 
technique and the solutions are derived as follows: 
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In order to get the physical insight into the problem, the 
numerical values of F have been computed from (31). 
While evaluating this expression, it is observed that the 
argument of the error function is complex and, hence, we 
have separated it into real and imaginary parts by using 
the following formula: 
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III.   RESULTS AND DISCUSSION 

 
 Results are computed for the dimensionless 

concentration C, temperature θ, the values of primary 

velocity U, secondary velocity V are obtained for different 
values of the rotation parameter Ώ, radiation parameter R, 

Schmidt number Sc, Hartmann Number M. Hall 
parameter m, thermal Grashof number Gr, mass Grashof 
number Gc, and time t and these numerical values are 
presented by means of different graphs. In order to 
understand the physical situation of the problem and 
hence the manifestations of the various material 
parameters entering the problem we have computed the 
numerical values using the software “Mat –Lab”. The 

value of the Prandtl number Pr is chosen to represent air 
(Pr = 0.71). The value of Schmidt number is chosen to 
represent water vapour (Sc = 0.6) and keeping the values 
of time t= 0.2. 
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A .CONCENTRATION PROFILE 
 

Figure 1 represents the effect of Schmidt number     
(Sc = 0.3, 0.6, 0.78, 2.01) on the concentration at time 
t=0.2. The effect of concentration is important in 
concentration field. As Schmidt number (Sc) increases the 
concentration decreases while the frequency of excitation 
remains constant. 

 
Figure 1: Concentration profiles for different Sc 

B. TEMPERATURE PROFILE 
 
Figure2. shows that the temperature profiles for 

different values of the thermal radiation parameter (R=0.2, 
0.2, 2.0, 5.0) and time (t=0.2, 0.6, 0.2, 0.2). It is observed 
that the temperature increases with decreasing radiation 
parameter and the temperature increases with increasing 
values of the time t.  

 
Figure 2: Temperature profiles for different values of R and t 

 

C. VELOCITY PROFILE 
 
Figure 3 and 4 shows the variation of primary and 

secondary velocity profile of Ω = M2m/ (1+m2). We 
observe that the primary velocity U falls when Ω are 

increased, but the secondary velocity V increases with 
increases in the values of Ω. Figure 5 and 6 present the 
variation of the primary velocity U and secondary velocity 
V profile for different value of Hartmann number M, here 
the primary velocity increases with decreasing values of 
M and the secondary velocity increase with increasing 
Hartmann number. Figure 7 and 8, it is noticed that, the 
primary velocity U and secondary velocity V rises due to 
increasing value of the Hall parameter m. Figure 9 and 10 
demonstrate the primary velocity U and secondary 
velocity V profile for different value of R, the primary 
velocity increases with decreasing values of the radiation 
parameter R, there is rise in the secondary velocity 
components, due to an increase in the radiation parameter 
R. The profiles for the primary and secondary velocity are 
shown in figure 11 and 12 for different value of Gr, Gc. It 
is observed from these figures that the primary and 
secondary velocity increases with increasing values of the 
thermal Grashof number and mass Grashof number. The 
figure 13 and 14 further show that the primary velocity 
increases with decreasing values of Schmidt number Sc 
and the secondary velocity increases with increasing 
values of Sc. Figure 15 and 16 that the primary and 
secondary velocity increases with increasing values of t. 

 

 
Figure 3: Primary velocity profiles for different   
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Figure 4: Secondary velocity profiles for different   
 

  Figure 5: Primary velocity profiles for different M 
 

 

       Figure 6: Secondary velocity profiles for different M 

 
Figure 7: Primary velocity profiles for different m   

                        

 
   Figure8: Secondary velocity profiles for different m 

 

 
Figure 9: Primary velocity profiles for different R 
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Figure10: Secondary velocity profiles for different R 

                        

 
   Figure11: Primary velocity profiles for different Gr and Gc 

 

 

                              

 

Figure12: Secondary velocity profiles for different Gr and Gc   
                              

 
Figure 13: Primary velocity profiles for different Sc 

        Figure 14: Secondary velocity profiles for different Sc 
 

    Figure15: Primary velocity profiles for different ‘t’ 
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         Figure 5.16: Secondary velocity profiles for different ‘ t’ 
 

IV. CONCLUSION 
 

The paper deals with the unsteady MHD free 
convection heat and mass transfer flow past an infinite 
vertical plate. The dimensionless governing equations are 
solved numerically using Laplace transform method. An 
analysis on the primary velocity (U) and secondary 
velocity (V), the following conclusions are listed below: 

 U rises due to increasing value of the Hall 
parameter (m), thermal Grashof number (Gr) and 
mass Grashof number (Gc), with increasing 
values of t. 

 U falls when Ω are increased, the velocity 
increases with decreasng values of the Hartmann 
number (M), the velocity increases with 
decreasing values of the radiation parameter (R), 
the velocity increases with decreasing values of 
Schmidt number (Sc). 

 V increases with increasing values of Ω, M, m, 

R, Gr, Gc and t. 
 As Schmidt number (Sc) increases the 

concentration decreases. 
 The temperature increases with decreasing 

radiation parameter, the temperature decrease 
with increase in the Prandtl number. 
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