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Abstract – There are several processes of memory where one does not always handle the patterns sequentially. For such situations, 

Löwdin's non-sequential orthogonalization methods might play a role where one can handle all the input patterns at the same time. 

These democratic orthogonalization methods are incorporated in the Hopfield model to circumvent the problem of catastrophic 

interference in the retrieval of, say, episoidal memories. In this paper, we have numerically tested the condition of associative memory of 

Hopfield model for large number of synaptic patterns   with the number of firing and not-firing neurons N. We have simulated the 

memory using Hopfield model by incorporating the sequential Gram-Schmidt and non-sequential Löwdin orthogonalization methods as 

the storage strategies for large data sets. We have numerically tested how the stored synaptic patterns can be retrieved. 

Key Terms: Canonical orthogonalization, Catastrophic interference, Gram-Schmidt method, Hopfield model, Memory plasticity, 

Symmetric orthogonalization. 

I. INTRODUCTION 

     The spin glass model proposed by [1] is the origin 

to model the brain's neural network. The activity in 

neural networks gained considerable momentum after 

the associative memory model proposed by J. J. 

Hopfield [2, 3]. But this model has a serious 

constraint that there is an interference between the 

stored input patterns which turns catastrophic when 

the number of stored patterns becomes quite large. In 

the Hopfield model, in a system of N firing and 

quiescent neurons and p input patterns, the condition 

of associative memory fails when
 

       , [4, 5, 

6] i.e., this model gives a memory capacity of 0:14N 

[7]. The retrieval process of stored patterns breaks 

down and a memory blackout occurs when the 

number of patterns that come to be recorded exceeds 

0:14N. This is the catastrophic interference [8] and is 

also known as the stability-plasticity problem [9]. 

The cause for this catastrophe is the correlation 

among the patterns (or memories), which makes the 

system noisy as the number of stored memories 

increases until retrieval becomes minimal [4, 5, 6]. 

This catastrophic interference has been a serious 

constraint also in other connectionist models [10] of 

neural networks in which the learning of new 

information beyond a certain limit causes sudden and 

complete disappearance of previously stored 

information.  

     It was proposed [11] that the process of 

orthogonalization could help to overcome the 

limitation of catastrophic forgetting on the memory 

capacity of the stored patterns. V. Srivastava et. al., 

[11, 12] have proposed models to understand how the 

brain discriminates and categorises different tasks. 

The mathematical computation of orthogonalization 

overcomes the noise among the learnt patterns and it 

circumvents the problem of catastrophic interference 

among the memories. The process of 

orthogonalization essentially compares a new object 

with those already in memory and it identifies their 

similarities and differences so that the new object can 

be placed in the right category. It is our 

understanding that the process of orthogonalization 

can overcome catastrophic interference but at the 

same time it can perform discrimination and 

categorization of different objects and tasks.  

     The Gram-Schmidt orthogonalization does this 

sequentially by taking patterns one by one and 

comparing them with the existing patterns in the 

memory. The sequential Gram-Schmidt 

orthogonalization process acts like decision making 

process wherein one object is compared with the 

stored ones and the nature of correlation with them 

decides, in an efficient and economical manner, in 

what form it should be stored. The noise is also 

eliminated. It is still unclear how the information in 

the brain is actually stored, processed and retrieved in 

biological neural networks. In the process of 

understanding how the brain processes similar and 

different tasks simultaneously, a few researches have 

explored the finer aspects of distinction between the 

same and different kind of stimuli [13], how the brain 

isolates objects from their backgrounds [14], how rats 

compare scents to do a task efficiently [15, 16] and 

how the previous awareness affects the sensory 

learning [17]. But the problem in all these and many 

more cognitive functions is the mind's ability to 

discriminate. How it is carried out in the brain 

physiologically is not known. It is possible that the 

brain could perhaps do orthogonalization, or 

something similar to it, to discriminate and categorise 

the information. 

   There are several other processes of memory where 

one does not always handle the patterns sequentially. 
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For such situations, Löwdin's non-sequential 

orthogonalization methods [18] and other methods 

[19] might play a role where one can handle all the 

input patterns at the same time. These democratic 

orthogonalization methods are incorporated in the 

Hopfield model to circumvent the problem of 

catastrophic interference in the retrieval of, say, 

episoidal memories. 

     In this paper, we have numerically tested the 

condition of associative memory of Hopfield model 

for large number of synaptic patterns p with the 

number of firing and not-firing neurons N. We have 

simulated the memory using Hopfield model by 

incorporating the sequential Gram-Schmidt and non-

sequential Löwdin orthogonalization methods as the 

storage strategies for large data sets. We have 

numerically tested how the stored synaptic patterns 

can be retrieved. 

 

II. THE HOPFIELD MODEL 

     We first outline the Hopfield model briefly to 

elicit the mathematical representation of the brain 

functions involved in the process of learning, 

memory and recognition, etc. [4, 5, 6]. We have 

studied the Hopfield model in neural networks to 

understand how the brain stores, retrieves and 

processes the information and to understand the 

catastrophic interference. The Hopfield model is 

numerically tested for large data sets to understand 

the condition of memory catastrophe in the case of 

large data sets. In a system of N number of firing and 

not-firing neurons, a pattern is represented by an N-

dimensional vector    whose N components   's are 

either +1 or -1, respectively. A pattern of +1 or -1 

represents a stable state of the neural system, and 

hence a memory, if it minimises the Hamiltonian, 
 

         
 

 
    

 
               …. (1) 

where     is the synaptic connection between the two 

neurons    and    . The procedure involved in 

Hopfield model is outlined here.  

    Let   be the number of patterns to be memorized 

and let the memorized patterns be represented by         , 

with        = 1. These patterns are randomly 

generated and each pattern is normalized. The weight 

matrix is formulated by using the Hebb's auto-

association outer product rule, 

    
 

 
   

  
     

 
                       ….. (2) 

where the index   represents the patterns. It gives the 

symmetric matrix        . Each memory is treated 

as independent, i.e. a new memory is added without 

reference to the previous ones. As there is no self-

feedback in a neuron, we set 

                          .…(3) 

 

                 
 

 
   

 
   
  

   
 

 
                ..... (4) 

 

where I is identity matrix. Starting with the first 

pattern, the patterns are picked up one by one 

sequentially and weights are calculated according to 

(2) in a cumulative manner. The cumulative changes 

in the weights store the patterns or the memories. In 

order to test if the patterns are there in the memory, 

we present one of the p memories of learnt patterns, 

say    , to the brain for association. It produces 

local fields   
  on all the neurons. This can be 

expressed as 
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The success of retrieval is measured by the sign of   
  

on all the sites i through the requirement 
 

  
  

   
  

   If the sign of   
  turns out to be the same as that of 

  
  for almost all i's, then the presented    is supposed 

to associate well with the     pattern. Hence the 

condition for good retrieval of the memorised 

patterns can be written as 

                                                …..(8) 

If this condition is satisfied on 97% or more of 

neurons, then it is considered to be a good retrieval. 

We have numerically tested a network consisting of 

100 to 1000 neurons storing   patterns for an overlap 

(               ) of 97%, 98% and 99% or more. We have 

drawn the graphs for these three cases between the 

fraction of the presented pattern that are retrieved and 
 

   , the number of presented patterns normalized by 

the number of neurons,  , for 500 to 1000 neurons 

considering the overlap between the presented and 

retrieved patterns to be 97%, 98% and 99% and is 

shown in Figure 1. The results show that the memory 

capacity of the Hopfield model is limited to 
 

     

0.14. The fraction of retrieved patterns begins to drop 

as 
 

   approaches 0.12 and then drops rapidly to 

zero around 
 

     0.18. The rate of drop does not 
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Figure 1: Plots of (no. of retrieved patterns)/(no. of 

presented patterns) versus (no. of presented 

patterns)/(no.of. neurons) for retrieval percentages (a) 

97%, (b) 98% and (c) 99%. 

 

appear to depend on the overlap parameter although 

one would expect it to be steeper as overlap increases 

from 97% to 99%. The above constraints in the 

model are known in the literature as memory 

catastrophe which is quite serious if we wish to have 

a large number of stored patterns. The reason for this 

is that there is interference between the stored input 

patterns because they are correlated, i.e., their vectors 

have non-zero dot products. The correlation among 

the memories makes the system noisy as the number 

of stored patterns increases. As the stored patterns 

increase in number, at some point the storage 

capacity will be exhausted, and new patterns will 

interfere with old patterns and they will prevent the 

retrieval of stored patterns. The problem of 

catastrophic interference among the memories could 

be overcome with the help of orthogonalization 

without having to resort to sparse coding as is 

sometimes suggested in the literature. The process of 

orthogonalization enables the network to compare a 

new object with those already in memories and to 

identify their similarities and differences so that the 

new object can be placed in the right memory. 

 
III. HOPFIELD NETWORKS WITH GRAM-

SCHMIDT METHOD 

     The Hopfield model is tested by incorporating the 

Gram-Schmidt orthogonalization process before the 

calculation of weight matrix     . The use of Gram-

Schmidt orthogonalization was proposed by V. 

Srivastava and S. F. Edwards to eliminate the noise 

and to achieve high memory capacity but at the same 

time to handle the correlated memories. The 

orthonormalized patterns obtained through the Gram-

Schmidt method are used to calculate the weight 

matrix    . The local field    is calculated by 

presenting the normalized raw patterns and the 

orthonormalized ones. Then the normalized raw 

patterns and orthonormalized patterns are presented 

to the weight matrix constructed by using the 

orthonormalized patterns. It is observed that the 

number of retrieved patterns is increased when the 

normalized raw patterns are presented to the weight 

matrix calculated using the orthonormalized patterns 

than in the usual Hopfield model. When the 

orthonormalized patterns are presented to the same 

weight matrix, all the patterns are completely 

retrieved, i.e., there is 100% retrieval of the presented 

patterns 

     The Gram-Schmidt orthogonalization is 

incorporated in the Hopfield model as follows. 
     Let there be   patterns to be memorized in a 

system of   neurons. Let the memorized patterns be 

represented by                  . These patterns are 

randomly generated and each pattern is normalized. 
The Gram-Schmidt orthogonalization process is used 

to calculate the orthonormal patterns. That is the 

process of exploring the store on the arrival of new 

information, say       , is represented mathematically as 

modifying the raw         so that it becomes orthogonal to 

the existing patterns. This process is defined through 

 

                
    

     
    

   

   
 
  
  

   

  
 
 
 
 
  

   

           …..(9) 

This amounts to exacting details from the     as well 

as the earlier patterns. The brain stores these           

rather than the raw           as in the case of Hopfield 

model. The second term on the right-hand side 

represents the sum of projections of           on all           

with        . Thus         is obtained after subtracting 

out from           its commonalities with all the 

earlier          . The normalization                  remains 

for all  . Note that 

         
 

   
 
                   …..(10) 

The weight matrix is obtained as before 

using             . 

    
 

 
   

 
  

 
           

 
         …..(11) 

where the index _ represents the patterns. It gives the 

symmetric matrix         . Each memory is 

independent, i.e., each time a new pattern (or 

memory) is added without reference to the previous 

ones. Again for      , we have the memory matrix 

    
 

 
   

 
  

 
 

 

 
 

 
       …..(12) 

 

where I is the identity matrix.  

If we now present           for retrieval all learnt           are 

retrieved perfectly as long as    . Thus the 

memory capacity is increased from 
 

        

to 
  

    . Interestingly the raw patterns           are 

also retrieved for    . Figure 2 shows perfect 

retrieval of orthogonalized as well as raw patterns 

after Gram-Schmidt scheme is invoked. In an N-

dimensional space there can be N orthogonal vectors. 

This restricts the capacity to  
  

    . 
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Figure 2: Plots of (no. of retrieved patterns)/(no. of 

presented patterns) versus (no. of presented 

patterns)/(no. of. neurons) for Gram-Schmidt method. 

IV. HOPFIELD NETWORKS USING LÖWDIN 

ORTHOGONALIZATIONS 

     We have tested the Hopfield model by 

incorporating the Löwdin's symmetric and canonical 

orthogonalization methods as the storage strategies. 

As with Gram-Schmidt we expect the patterns 

orthogonalized by these two schemes to be retrieved 

perfectly since they will also eradicate the noise in 

the same manner as Gram-Schmidt does. However 

we expect the orthogonalized patterns to possess 

different characters than those orthogonalized with 

Gram-Schmidt scheme. Since the underlying schemes 

are democratic in nature and handle the given set of 

random patterns altogether yet quite differently, we 

expect that the fine differences between canonical 

and symmetrical methods and their differences with 

Gram-Schmidt will be useful in their applications to 

cognitive phenomena. We randomly generate the raw 

patterns of firing/not-firing neurons and normalize 

them. We then calculate the symmetric and canonical 

orthonormal bases and form the weight matrices 

using them. Then, we presented the normalized raw 

patterns to the symmetric and canonical weight 

matrices and calculated their local field to study 

retrieval. 

A. HOPFIELD NETWORKS WITH SYMMETRIC 

ORTHOGONALIZATION 

     The Löwdin's symmetric orthogonalization 

method can be incorporated in the Hopfield model as 

follows.                  Let p patterns                

in N dimensions be written as matrix   , whose 

columns represent the input patterns. The Gram 

matrix   is constructed as       and its 

eigenvalues   and normalized eigenvectors   are 

calculated. The symmetric orthonormal bases are 

obtained using 

                          
  

           …. (13) 

The brain stores these            rather than the raw     . 

The weight matrix is now 

           
 

 
   

 
  

 
 

 

 
 

 
           …. (14) 

where I is the identity matrix. 

 

B. HOPFIELD NETWORKS WITH CANONICAL 

ORTHOGONALIZATION 

     The Löwdin's canonical orthogonalization method 

is incorporated in the Hopfield model in the same 

fashion as above. The canonical orthonormal bases 

are obtained using 

                               
  

                         …. (15) 

And the weight matrix is written as 

                   
 

 
   

 
  
 
 

 

 
 

 
                  …. (16) 

where   is the identity matrix. Quite expectedly, the 

memory capacity in both `symmetric' and `canonical' 

orthogonalizations is   
  

     as shown in Figures 

3 and 4.  

    The major difference between the Gram-Schmidt 

and the Löwdin methods is that in the latter as one 

new pattern is added after a set of    patterns is 

orthogonalized; the entire lot of     patterns is 

orthogonalized all over again. Thus the sets of   and 

    orthogonalized patterns differ from each other. 

The differences between the sets also depend on 

whether we employ canonical or symmetric 

orthogonalization and discussed these changes in the 

following section. 
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Figure 3: Plots of (no. of retrieved patterns)/(no. of 

presented patterns) versus (no. of presented 

patterns)/(no. of. neurons) for symmetric method. 

 

Figure 4: Plots of (no. of retrieved patterns)/(no. of 

presented patterns) versus (no. of presented 

patterns)/(no. of. neurons) for canonical method. 

V. COMPUTATIONS AND RESULTS 

     We have numerically simulated and tested the 

Hopfield model by presenting patterns of firing/not-

firing neurons starting with the smaller data sets. We 

have applied the Löwdin's symmetric and canonical 

orthogonalizations for the case of 5 randomly 

generated normalized input patterns of 10 firing or 

not-firing neurons. When a new pattern is added each 

time without disturbing the previously stored 

patterns, it changes all the weights and triggers 

electric activity among neurons and generates local 

field on each of them for symmetric and canonical 

orthogonalizations. The addition of new pattern will 

change all the previously stored 5 patterns in both 

symmetric and canonical schemes, and generate new 

ones. The randomly generated 5 patterns and their 

corresponding symmetric and canonical patterns are 

shown in Figure 5. Figure 6 shows the results of 

symmetric and canonical orthogonalizations when the 

new pattern is added. 

 

 

 
Figure 5: 5 randomly generated patterns and their 

corresponding symmetrically and canonically 

orthogonalized patterns. 

 

 

 

 
Figure 6: 6 randomly generated patterns and their 

corresponding symmetrically and canonically 

orthogonalized patterns. 

 

     We have added the     pattern, with 70% 

dissimilarity to the     pattern and all the six patterns 

are orthogonalized using the symmetric and canonical 

orthogonalizations. We have projected the 

normalized input patterns onto the symmetric and 

canonical orthonormal patterns to check how they 

have changed in a gross sense. In the case of 

symmetric orthogonalization, the sum of squared 

projections of any of the normalized input patterns 

onto any of the symmetric orthonormal patterns is 

equal to unity. When all the normalized input patterns 

are projected individually onto the canonical patterns 

picked up one by one, then the sum of squared 

projections is found to be the largest on the canonical 

pattern which corresponds to the largest eigenvalue. 

     Starting from 5 patterns we have added one by one 

5 new patterns. Quite surprisingly it turns out that the 

2nd canonical pattern carries the largest eigenvalue 

and therefore captures the maximum projection of all 

the raw patterns. Each of 5 patterns changes as the 

sixth pattern is added and they are subjected to 

canonical and symmetric orthogonalizations 

respectively. The changes are generally vigorous in 

the case of canonical orthogonalization (even signs 

change) whereas in the case of symmetric 

orthogonalization the changes caused by adding the 

    pattern are moderate (the sign does not change). 
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VI. CONCLUSION 

     Our numerical simulations of the neural networks 

model due to Hopfield by incorporating the two 

democratic orthogonalization schemes could pave the 

way for studying cognitive learning and memory 

under special circumstances. The comparison with 

the earlier work on Hopfield network with Gram-

Schmidt orthogonalization incorporated shows 

significant departure in the results. In the broad terms 

this work shows that the brain might handle 

sequential learning through Gram-Schmidt, and the 

storage of information thus acquired, very differently 

from the way it might process the information 

acquired in bunches (i.e. simultaneous intake of a set 

of disparate information), for example in episodic 

memories. A lot of work needs to be done in close 

association with neuroscientists to unravel some 

mysteries of how the brain functions. 
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