
International Journal of Advanced Scientific Technologies, Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.1, Issue.2,July.2015

 Page 17

A 16 Core Processor With Hybrid Inter-Core

Communication

K. Kusuma (M.Tech), S. Aruna Mastani M.Tech , Ph.D ,

 Dept. Of. ECE, Assistant Professor,

 JNTUACEA, Dept. Of. ECE,

 Anantapur. JNTUACEA,

 Anantapur.

Abstract: A 16-core processor with hybrid (i.e., both message-passing and shared-memory) inter-core communication mechanisms

are implemented in 90nm CMOS. Shared-memory communication is supported using the shared memory within each cluster and

Message-passing communication is enabled in a 3× 6 Mesh packet-switched network-on-chip. The proposed system consists of a direct

memory to memory communication between two clusters which is implemented by using a DMA prototype. The prototype is especially

designed for specific functionality. It is observed that the communication time between the source and destination is 620ns in case of

shared-memory communication and it gets reduced to 450ns in case of message-passing communication. Compared to shared-memory

and message-passing communications the proposed system reduces the communication time to 330ns. Three types of communications

are implemented in XILINX 12.2 version software.

Index Terms—Chip multiprocessor, Direct Memory Access, cluster-based, SIMD, inter-core communication, shared-memory,

multi-core, message-passing, network-on-chip (NoC), inter-core synchronization, Memory to Memory.

I. INTRODUCTION

In order to meet performance requirements single

core designs were pushed to higher clock speeds, thereby

the power requirement grew at a faster rate than the

frequency. This power problem was exacerbated by

designs that attempted to dynamically extract extra

performance from the instruction stream, As we will note

later that this led to designs that were complex,

unmanageable, and power hungry. To meet these

requirements chip designers turned to multi-core

processors. A multi-core processor is one which consists

of multiple number of processors on a single chip, all

these processors work in parallel thereby the overall

performance of the multi-core processor increases. To

meet power budget many efforts are taken to optimise

memory hierarchy and to increase parallelism

concurrently.

Inter-core communication plays an important role to

balance the power and performance in a multi-core

processor. Now a day’s multi-core architecture introduces

new challenges for effective implementation of inter-core

communication. When certain problem is given

to an embedded processor the throughput depends on both

computing capability and communication efficiency

between cores. To enhance computing capability there are

various technologies such as Very long instruction word

(VLIW), Single instruction multiple data (SIMD), Super

scalar, Reduced Instruction set computer (RISC) etc. But

there are no matured solutions for inter-core

communication, Hence the research focus on improving

the efficiency of inter-core communication.

Shared-memory communication is most often

used inter-core communication mechanism due to its

simple programming model but it fails to provide

sufficient scalability with the increasing number of

processors.[3]-[5]. Therefore the designers turned to

message-passing communication mechanism which has

high scalability even with the increase in number of

resources.[6]-[9]. We can obtain high performance by

integrating both the inter-core communication

mechanisms.[1]. The proposed system introduces a new

type of inter-core communication called Memory- to-

Memory communication through which the path from

source to destination in multiple number of clusters gets

reduced thereby the performance gets increases alot

compared to previous mechanisms.

This paper is organised as below. Section II describes

the key features of the 16-core processor. Section III

details the design and implementation of existing

methods. Section IV describes the implementing method.

Section V presents the measured results. Section VI

International Journal of Advanced Scientific Technologies, Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.1, Issue.2,July.2015

 Page 18

concludes the paper. Section VII describes the future

work.

II. KEY FEATURES

A. Multi-core Processors.

A processor is an electronic element executes a

set of instructions each at a time and produces results. A

multi-core processor is a single computing component

with two or more independent actual processors (called

"cores"), which are the units that read and execute a set of

instructions simultaneously. Multi-core processor

architecture is now becoming the mainstream of

commercial processor architecture in the market.

Parallelism and pipelining are implemented in a multi-

core processor. Thereby the performance of the multi-core

processor is very high when compared to a normal

processor. To execute an instruction the processor will

take the data either from the shared-memory or from

another processor.

B. Inter-core Communication.

It is defined as the communication between

multiple number of processors integrated on a single chip.

Power and cost budgets limits high computability

processors to be integrated on a chip thereby the overall

performance of multi-core processor relies highly on inter-

core communication. In multi-core processors the data

stream flows through several processor cores until getting

the results. Thus the throughput is highly relevant to inter-

core communication. With the increasing number of cores

more challenges are required to achieve efficient inter-

core communication.

C. Hybrid Inter-core Communication.

Two types of inter-core communication

mechanisms exist for an embedded processor. The first

one is Shared-memory communication which is

implemented by making use of a shared cache or memory

units. Typical examples are cortexA9, UltraSPARC,

HYDRA etc. The features of shared-memory

communication are simple programming, used for

transferring of large blocks of data. It faces several

challenges which limits its use in future processors. First

its low scalability, more than 8 cores are not allowed to

share a single memory. In an 8 core processor the

interconnections take area equivalent to 3cores and

consume power equivalent to one core. Second cache

coherence issues are very complex which results in more

hardware overhead.

Because of its high scalability the second type of

communication i.e., Message-passing communication

attracts many designers. It is implemented by connecting

the processors in a Network in certain topology like mesh,

bus, ring etc. Typical examples are ASAP, Intel-80 tile

etc. In spite of its strong scalability it has complex

programming model, and the quality of service (QoS) is

not guaranteed.

Shared-memory and Message-passing

communications are suitable for two different

environments. By combining both the mechanisms it is

suitable to work in all scenarios. Shared memory

communication is implemented by a cluster based

memory hierarchy and Message-passing communication is

implemented by arranging the processors in a 2D mesh

network on chip. The features of shared-memory

communication and message-passing communication are

described below in Table-1.

D. Cluster-Based Memory Hierarchy.

In multi-core processors the competition for

memory resources increases with increasing core number

results in “Memory wall” issues, Memory access latency

and cache coherence issues become more complex.chip

multiprocessor. Some designers solve this problem by

using cache free architectures and some others suggested

to partition the cache in to shared and private memory in

order to improve the efficiency.

E. Direct Memory Access.

Direct Memory Access (DMA) is one of several

methods for coordinating the timing of data transfers

between an input/output (I/O) device and the core

processing unit or memory in a computer. DMA is one of

the faster types of synchronization mechanisms, generally

providing significant improvement in terms of both

latency and throughput. DMA allows the I/O device to

access the memory directly, without using the core. DMA

can lead to a significant improvement in performance

because data movement is one of the most common

operations performed in processing applications.

International Journal of Advanced Scientific Technologies, Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.1, Issue.2,July.2015

 Page 19

TABLE-1

Comparison of Shared-Memory and Message-Passing inter-core communications

Fig. 1. Architectural Overview of the 16-core processor

III. EXISTING METHODS.

The existing system has 16-core processors

which are connected in 3× 6 2D Mesh NoC form that

links 16 core processor (PCore) and 2 memory cores

(MCore). Cluster-based architecture is employed with two

clusters where each cluster contains eight PCores and one

MCore. The PCores present in the cluster can able to

access the MCore present in the same cluster. A hybrid

inter-core communication scheme is employed supporting

both shared-memory and message-passing

communications. Shared memory in MCore enables

shared-memory communications within the cluster, and

the NoC enables message-passing communication among

all PCores. The architecture overview of existing system

is as shown in Fig.1 Data enters and leaves the processor

through the input and output FIFO (First In First Out).

Each PCore has 2k-word instruction memory and 1k-word

private data memory. MCore has 8k-word shared memory

with 4 memory banks.

A. Designing of key modules

1). Processor core:

The architecture of PCore is shown in Fig. 2. The

processor core has six-stage pipelined SIMD processor. In

Instruction Fetch stage Instructions are fetched from

instruction memory according to the program counter. The

Fig. 1. Architecture overview of proposed 16 core processor

International Journal of Advanced Scientific Technologies, Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.1, Issue.2,July.2015

 Page 20

decode stage converts the instructions fetched into

opcodes and fetches operands from register files.

Operations like addition, subtraction, multiplication, and,

or, etc. All arithmetic and logical operations are

performed and address calculations are done in execution

phase. Data memory accessing is done in memory stage.

The data is aligned in align stage and written back to

register file or output FIFO in write back stage. The six-

stage pipelining of the processor is as shown in Fig.3.

Typically private data memory access requires 1 clock

cycle and shared memory access takes 2 clock cycles

because of its contention.

 SIMD Instruction Set Architecture (ISA)

supports 3 computing modes includes scalar-scalar, scalar-

vector and vector- vector. Now a day’s most of the

processors support three kinds of data widths they are 8b,

16b, and 32b. The proposed processor is of 32b wide. We

reconstruct the data path with reconfigurable data width.

Power consumption reduces with the increase in data

locality so, we extended the register file size to 64 words

from 32 words. The benefits of this extended register file

are more number of registers is available means more

capacity to allocate data so the performance of the

processor gets improved. These register files serves as

FIFO mapping ports. As we are directly processing with

the registers so, no need of load/store instructions thereby

the time to access the data from memory gets reduced.

Each core processor has a router which consists of 4

FIFOs and a control unit to control the flow mechanism.

Fig. 2. Architecture overview of PCore

Fig. 3. The six-stage pipelining of the processor core.

2) Memory Core:

 A MCore consists of 8k-word shared memory

which is partitioned in to four banks. All processor cores

can access the MCore directly by hardwires with fixed

priority order to obtain high performance and low cost,

and to simplify the arbitration logic and optimize the

critical path. Because of fixed priority access it may leads

to live-lock conditions, but in reality the live-lock is rarely

observed. The shared memory is mainly used to map the

data between different processors. If the data is not ready

in the memory the PCore has to wait till the data is

available even though it is having highest priority. The

latency of MCore accessing without contention is 2

cycles. It increases if multiple number of processors

requests the memory at the same time because the

processors with low priority has to wait till it gets its turn.

International Journal of Advanced Scientific Technologies, Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.1, Issue.2,July.2015

 Page 21

The architecture overview of MCore is as shown in Fig. 4.

It has a multiplexer which is used to select the processor

that can access the MCore, And a Decoder is present

which is used to select the memory bank on which the

processor can store or load the data. A router is designed

which performs the same operations as in PCore.

B. Design of Hybrid Inter-Core Communications.

A hybrid inter-core communication is employed

by integrating both message-passing and shared-memory

communication schemes which is implemented in Fig. 5.

The 2D Mesh NoC supports the message-passing

communication which is highly scalable and is suitable for

transferring of frequent and scattered data packets. It is

mainly used in control data flow applications. The shared

memory in the MCore supports the shared-memory

communication inside the cluster which is suitable for

large data block transferring. It is mainly used in

computational dataflow applications.

1) Shared-Memory Communication:

The processors which are present in the same

cluster can access the MCore with fixed priority order.

The max number of PCores in a cluster are limited to

eight. The processor on the top left corner has highest

priority and the PCore on the Bottom right corner has

lowest priority. High inter-core synchronization efficiency

has been achieved through hardware-aided mailbox

mechanism. Shared-Memory communication involves

mainly three steps, First the source PCore stores the data

in to shared memory, next it sends a synchronization

signal to the destination PCore, Finally the Destination

PCore access the data from shared memory after the

synchronization signal is received. The steps for shared-

memory communication are as shown in Fig. 6.

Fig.5.Architecture overview of MCore.

Fig.6. Implementation of the hybrid inter-core

communications: (a) Shared-memory via MCore (b)

Message-passing via NoC.

Fig.7. Three steps in a typical shared-memory communication: (1) Src PCore stores data to shared memory in MCore; (2) Src

PCore sends synchronization signal to Dest PCore; (3) Dest PCore loads data from shared memory when synchronization

signal is received.

International Journal of Advanced Scientific Technologies, Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.1, Issue.2,July.2015

 Page 22

2) Message-Passing Communication:

 A 3×6 2D Mesh NoC supports Message-Passing

communication where an XY dimension ordered

wormhole routing algorithm is implemented. Even the

shared-memory communication is implemented only

within the cluster, The Message-passing communication is

implemented between any two processors in the chip (i.e.,

with in the cluster or outside the cluster). It is more

scalable and is mainly used for transferring of frequent

and scattered data. Apart from its advantages it has 2

bottlenecks. The first one is the uncertainty in the

communication channel. The network with heavy traffic

will block the data packets in the channel hence the

latency gets increased. But with the aid of shared-memory

communication within the cluster the traffic load on the

network can be reduced. The second bottleneck lies in the

data transferring between the processor and router. By

using two input FIFOs and one output FIFO between the

Processor and router we can solve this problem. One input

FIFO is used to receive the data coming from another

processor core and second FIFO is used to receive data

coming from memory core. When router receives data

from another router based on the MSB digit it will decide

whether the data comes from PCore or from MCore and

then it will store the data on the corresponding FIFO’s.

The data from one of the input FIFO is moved to

extended register files or data memory and the data from

second input FIFO is moved to the receiver and then to

data memory. The data path in message-passing

communication is as shown in Fig. 7.

3) Hardware-Aided Mailbox Synchronization:

To support inter-core communication Hardware-

aided mailbox synchronization is used rather than

software synchronization protocols. Every core i.e., both

PCore and MCore has a mailbox and it is accessed by

PCores and the receiver in the same cluster. It generates a

synchronization signal based on which the SIMD

processor will accept the input data. By using a

Multiplexer we can select one of the 8 PCores present in a

cluster and a receiver. Mailbox has 9 registers of 4 bits

each which are used to store the LSB bits of PCores and

the receiver. By using address and enable inputs we can

select one of the registers and verify its value with the

check value if both the values are equal the mailbox will

return a valid signal otherwise an invalid signal is

generated. The design of the mailbox is as shown in Fig. 8

Fig.7. Datapath of the message-passing communication in

PCore.

Fig.8. Hardware design of the mailbox synchronization.

 IV. PROPOSED SYSTEM

The proposed system introduces a new

mechanism for inter-core communication i.e., a Memory-

to-Memory communication between the MCores in two

clusters. It is implemented by using a memory interface it

may be a FIFO, Router, DMA etc. In order to implement

this Memory-to-Memory communication first we have to

design a processor architecture with 16-core processors

which are connected in 3× 6 2D Mesh NoC that links 16

core processor (PCore) and 2 memory cores (MCore).

Cluster-based architecture is employed with two clusters

where each cluster contains eight PCores and one MCore.

The PCores present in the cluster can able to access the

MCore present in the same cluster. The designing and

implementation of processor cores (PCore) and memory

cores (MCore) is explained in existing methods. This

portion mainly concentrates on designing the memory

interface and implementing memory-to-memory

communication.

A. Design and implementation of memory

interface:

International Journal of Advanced Scientific Technologies, Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.1, Issue.2,July.2015

 Page 23

The Memory interface may be a FIFO,

ROUTER, DMA....etc. Here it is a DMA prototype which

is mainly designed with specific functionalities. It consists

of some memory which may be a register (or) a FIFO and

it is used to store the data loaded from the MCore. A

controller is required to control the load store operations

in the memory. The main purpose of this memory

interface is transferring the data between two memory

cores in two different clusters directly without the

intervention of processor cores.

The memory-to-memory communication

between clusters is implemented simply in five steps first

the data is loaded in to the source processor (PCore 1)

through an input FIFO. Second the data from source

processor is loaded directly in to memory core present in

the same cluster. Next by using a memory interface the

data is loaded in to the interfacing component and this

data is transferred from interfacing component to memory

core present in the second cluster. Next the data from

second MCore is directly loaded by destination Processor

core (PCore 16). Lastly the data from destination

processor is collected through an output FIFO. The

architecture of proposed system is as shown in Fig. 8. If

we observe the three communication mechanisms the

communication path is greatly reduced from cluster to

cluster in case of Inter-memory communication. The path

from source to the destination requires only 5 intermediate

components hence it is very efficient to use memory to

memory communication in multicore processors

compared to shared-memory and message-passing

communication.

Fig. 8. Architecture overview of proposed system

V. MEASUREMENT AND EVALUATION.

1) Area:

The proposed cache-free architecture can

significantly reduce chip area. Moreover, embedded

applications usually require limited memory resources, so

only 256 KB on-chip memory units are implemented. As a

result, we can place more area budgets on execution cores

and inter-core communication units. The no of LUT slices

required to implement shared-memory, message-passing

and memory-to-memory communication are 1279, 1466

and 922 respectively. Atmost the communication

mechanisms consumed only 60% of total sliced LUTs.

The complete details are as shown in synthesis results.

2) Performance and power:

 In multi-core processors the throughput mainly

depends on computing capability and communication

efficiency between cores. To enhance computing

capability there are various technologies such as VLIW,

SIMD, Super scalar, RISC etc. In order to achieve high

communication efficiency we are proposing this method.

The three communication mechanisms in which two of

them are already existing schemes and the last one is

newly implemented here. In this paper we are

implementing the three communication mechanisms and

then we are comparing the throughputs of existing

methods with proposed one. It is observed that the shared-

memory communication takes 610ns to transfer the data

from source processor to destination processor and

Message-passing communication required 470ns to

transfer the data between source and destination

processor. The proposed method i.e., memory-to-memory

communication requires only 330ns to transfer the data.

Hence from these results it is observed that the proposed

inter-memory communication mechanism is very much

effective and results in high performance when compared

to shared-memory and message-passing communication.

The simulation results are as shown in Fig.9, Fig. 10, Fig.

11.

Two key features contribute to the low power

consumption. First, cache is discarded in the proposed

cluster-based memory hierarchy, thus related hardware

overhead is also reduced. Second, the data locality is

improved by extended register file and separation of

private and shared memory.

Memory

Interface

International Journal of Advanced Scientific Technologies, Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.1, Issue.2,July.2015

 Page 24

Fig. 9. Simulation results of shared-memory communication.

Fig. 10. Simulation results of message-passing communication.

International Journal of Advanced Scientific Technologies, Engineering and Management Sciences (IJASTEMS-ISSN: 2454-356X) Volume.1, Issue.2,July.2015

 Page 25

Fig. 11. Simulation results of memory-to-memory communication.

VI. CONCLUSION

A 16-core processor for embedded applications

with Memory-to-Memory communications is proposed in

this paper and it is compared with existing inter-core

communication mechanisms. The processor has 16

processor cores and 2 memory cores. Message-passing

communications are supported by the 3×6 2D Mesh NoC,

and shared-memory communications are supported by

shared memory units in the memory cores. The cluster-

based memory hierarchy makes the processor well-suited

for most embedded applications. The processor chip has a

total 256 KB on-chip memory, while each processor core

has an 8 KB instruction memory and a 4 KB private data

memory, and each memory core has a 32 KB shared

memory. A memory-to-memory communication is

implemented using a memory interface called DMA. The

DMA used here is a prototype one which performs only

specific functions. The proposed system provides high

throughput compared to existing methods. The proposed

system is implemented in 90nm CMOS using XILINX

12.2 version software.

VII. FUTURE WORK

The performance of the processor gets still increased by

implementing the inter-memory communication with

exact DMA. It‘s throughput gets increased by using

parallel processors.

REFERENCES

[1] Zhiyi Yu, and Ruijin Xiao , ”A 16-Core Processor With Shared-

Memory and Message-Passing Communications.”.Trans.circuit

syst.vol.61,No.4,April 2014.

[2] G. Blake, R. G. Dreslinski, and T. “A survey of multicore processors:

A review of their common attributes,” Signal Process. Mag., pp. 26–37,

Nov. 2009.

[3] R. Kumar, V. Zyuban, and D., “Interconnections in multi-core

architecture: Understanding mechanisms, overheads and scaling,” in

Proc. 32nd Int. Symp. Computer Architecture (ISCA’05), 2005, pp. 408–

419.

[4] H.-Y., Y.-J. Kim, J.-H. Oh, and L.-S. Kim, “A reconfigurable SIMT

processor for mobile ray tracing with contention reduction in shared

memory,” Trans. Circuits Syst. I, Reg. Papers, no. 60, pt. 4, pp. 938–

950, Apr. 2013.

[5] L. Hammond, B.-A. Hubbert, M. Siu, M.-K. Prabhu,M. Chen, and K.

Olukolun, “The stanford Hydra CMP,” Micro, vol. 20, no. 2, pp. 71–84,

2000.

[6] A. S. Leon, B. Langley, and L. S. “The UltraSPARC T1 processor:

CMT reliability,” in Proc. Custom Integrated Circuits Conf. (CICC’06)

Dig. Tech. Papers, 2006, pp. 555–562.

[7] M.-B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B.

Greenwald, H. Hoffman, P. Johnson, J.-W. Lee,W. Lee, A. Ma,A.

Saraf,M. Seneski,N. Shnidman, V. Stumpen, M. Frank, S. Amarasinghe,

and A. “The Raw microprocessor: A computational fabric for software

circuits and general-purpose programs,” Micro, vol. 22, no. 2, pp. 25–35,

Mar/Apr. 2002.

[8] Tilera Corp., Tilepro64 Processor Tilera Product Brief, 2008

[Online].Available:http://www.tilera.com/pdf/Product-

Brief_TILEPro64_Web_v2.pdf

[9] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,

D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y.

Hoskote, N. Borkar, and S. Borkar, “An 80-tile sub-100-WteraFLOPS

processor in 65-nm CMOS,” J. Solid-State Circuit, vol. 43, no. 1, pp.

29–41, Jan 2008.

http://www.tilera.com/pdf/Product-%20Brief_TILEPro64_Web_v2.pdf
http://www.tilera.com/pdf/Product-%20Brief_TILEPro64_Web_v2.pdf

