Enhancement Of Power Quality For Fuzzy Logic Controller Based On UPQC Controller In Grid Connected Photovoltaic Cell

Dr.L.V.Narasimha Rao Professor, Department of EEE, Priyadarshini Institute of Technology & Science Chintalapudi, Guntur(Dt), Andhra Pradesh

Abstract--. In this paper, the design of combined operation of UPQC and PV-ARRAY is designed. The proposed system consists of UPQC connected back to back by a dc-link to which pv-array is connected. The UPQC system takes care of both current and voltage in inter-connected mode and islanding mode by injecting active power to grid. The Power Electronic Devices (PED) and Sensitive Equipments (SE) are normally designed to work in non-polluted power system, so they would suffer from malfunctions [when supply voltage is not pure sinusoidal. Thus this proposed operating strategy with flexible operation mode improves the power quality of the grid system combining photovoltaic array with a control of UNIFIED POWER QUALITY CONDITIONER. Pulse Width Modulation (PWM) is used in both three phase four leg inverters. A Proportional Integral (PI) and Fuzzy Logic Controllers are used for power quality improvement by reducing the distortions in the output power. The simulated results were compared among the two controller's strategies With pi controller and fuzzy logic controller.

Index Terms— PV-array, UPQC, PCC, DVR

I.INTRODUCTION

When the supply voltage is not pure sinusoidal the devices suffer from harmonics, inter harmonics, notches and neutral currents, the power quality should be improved [3]. The solution to PQ problem can be achieved [9] by adding auxiliary individual device with energy storage at its dc-link by PV-array. This auxiliary equipment has the general name of power conditioners and is mainly characterized by the amount of stored energy or stand alone supply time. That auxiliary equipment having both "shunt" and "series" inverter connected back to back by a dc-link is called the "unified power quality conditioner". The Photo voltaic and UPQC is used to improve the power quality.

The UPQC is able to compensate voltage interruption and active power injection to grid because in its dc-link there is energy storage known as Distributed Generating (DG) source. The attention to distributed generating (DG) sources is increasing day by day. The important reason is that roll they will likely play in the future of power systems. Recently, several studies are accomplished in the field of connecting DGs to grid using power electronic converters.

The UPQC is a combination of series and shunt active filters connected in cascade via a common DC link capacitor. The UPQC is used to compensate [4] for supply voltage power quality issues such as, sags, swells, unbalance, harmonics, and for load current power quality [6] problems such as unbalance, harmonics, voltage dips , reactive current and neutral current.

II.System Description Of UPQC

UPQC has two inverters shunt (or) D-Statcom and series (or) DVR voltage source inverters. Series inverter stands between source and coupling point [5] by series transformer and Shunt inverter is connected to point of common coupling (PCC) by shunt transformer. Shunt inverter operates as current source and series inverter operates as voltage source. UPQC is able to reduce unwanted distortions [1] and can compensate voltage interruption because of having PV-array as a source. Common interconnected PV systems structure is as shown in figure 1. In this paper it is proposed for UPQC, where PV is linked to DC link in UPQC as energy source [1] [9].

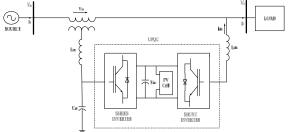


Fig 1. Configuration of proposed UPQC

The characteristic equation of a PV cell is the output current produced by it and is expressed as

$$I = Ipv - Io\left(e\left(\frac{V + RsI}{Vta}\right) - 1\right) - \frac{V + RsI}{Rp}$$

Where I_{PV} =Current generated by solar radiation I_0 = Leakage current

Vt =Thermal voltage of PV module with Ns

PV cell connected in series = NsKT/Q

K=Boltzmann constant=1.3806503 x 10-23J/K

Q=Electron Charge=1.60217646 x 10-19 C

T=Temperature in Kelvin a=Diode ideality constant (1 < a < 1.5)

PV cells connected in parallel increases the total output current of the PV module where as cells connected in series increases the total output voltage of the cell. The open circuit voltage/temperature coefficient (KV), the short circuit current/temperature coefficient (KI), and the maximum experimental peak output power (Pmax, e).These information are always given at standard test condition i.e. at 1000W/m2 irradiation and 25^oC temperature.

The current generated by solar radiation depends linearly on the solar irradiation and is also influenced by the temperature according to the following equation[6]

$$Ipv = (Ipv, n + K1\Delta T)\frac{G}{Gn}$$
(2)

Where,

I_{PV}, n is the light generated current

T =Actual temperature-Nominal temperature in Kelvin

G=Irradiation on the device surface Gn=Irradiation at nominal irradiation

$$Io = Io, n \left[\frac{Tn}{T}\right]^{3} \exp\left[\frac{qEg}{aK}\left(\frac{1}{Tn} - \frac{1}{T}\right)\right]$$
$$Io, n = \frac{\overset{(3)}{Isc, n}}{\exp\left(\frac{Voc, n}{aVt, n}\right) - 1}$$
(4)

Where Voc, n=Nominal open circuit voltage of the PV moduleLastly the combination of series and parallel resistance of the PV [9] cell can be calculated by any iteration method.

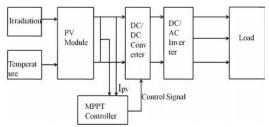


Fig 2. Complete block diagram of PV Module with MPPT Controller

Figure 2 shows the complete block diagram of a PV module with a MPPT controller and feed power to the load through a dc to dc converter. The output current and voltage of the PV module is taken as input by MPPT and its input is based on the control algorithm it gives appropriate command to the converter to interface the load with the PV moduleMaximum Power Point tracking controller is basically used to operates the Photovoltaic modules in a manner that allows the load connected with the PV module to extract the maximum power which the PV module capable to produce at a given atmospheric conditions. The single operating point of PV module has the values of the current and voltage of the cell result in a maximum output power. It is a big task to operate a PV module consistently on the maximum power point and for which many MPPT algorithms have been developed[5]. The leading technique of MPPT is Perturb and Observe (P&O) method. This method is having its own advantages and disadvantages. The aim of the present work is to improve the (P&O). MPPT controller and then the fuzzy control has introduced on it to improve its overall performance. Currently the most popular MPPT algorithm is perturb and observe (P&O), where the current/voltage is repeatedly perturbed by a fixed amount in a given direction, and the direction is alternated only the algorithm detects a drop in power. If the enhancement of power is observed then the subsequent perturbation should be kept in the same direction to reach the MPP and if there is a decrease in power then the perturbation should be reversed. The perturbation of the controller gives a reference voltage which is compared with the instantaneous PV module output voltage and the error is fed to a PI controller which in turns decides the duty cycle of the DC/DC converter as shown in Figure 8. The process of perturbation is repeated periodically until the MPP is reached. So at every point of PV-array the MPP and correspondingly capacitor-DC links voltage are calculated The three stages of the controller are

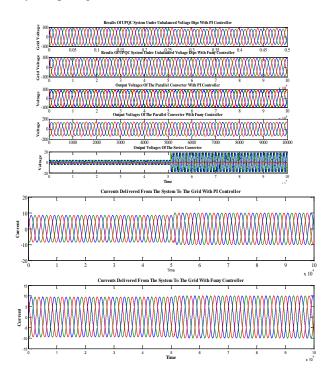
1)Fuzzification.

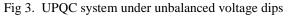
2)Rule base .

3)Defuzzification.

During fuzzification, numerical input variables are converted into linguistic variable based on a membership functions. The inputs of MPP are considered w.r.t change in current E and change in voltage error C. When the value of E and C are found they are converted into linguistic variables. The output of fuzzy controller, which is the duty cycle ratio D of the power converter, is used for rule base table. The values allocated to D for the different combinations of E and C is based on the user. Depending on the values of P&O algorithm rule base is designed. In the defuzzification stage, the fuzzy logic controller output is converted from a linguistic variable to a numerical variable still using a membership function. However, their influence depends a lot on the intelligence of the user or control engineer in choosing the right error computation and coming up with the rule base table. The comparison for error E and change in code C are given as follows:

$$E = \frac{P(K) - P(K-1)}{I(K) - I(K-1)}$$
(5)


$$C = V(K) - V(K-1)$$
(6)


The plant control 'u' is inferred from the two state variables, error (e) and change in error (Äe) The actual crisp input are approximates to the closer values of the respective universes of its course. Hence, the fuzzyfied inputs are described by singleton fuzzy sets. The detailed of the controller is based on the phase plan. The control rules base are designed to assign a fuzzy set of the control input u for each combination of fuzzy sets of e and de.

III.Simulation Results

From the above figure 3 results under distorted grid voltage side a harmonics is obtained with PI controller.

These harmonics are eliminated in grid voltage side by applying fuzzy controller so in turn pure sinusoidal wave is obtained. The output voltage of parallel converter is reduced by using fuzzy controller compared to PI controller. The source current returns to sinusoidal mode after passing the transient state at 0.00055sec when PV outages. When PV outages in advance, voltage has 180° phase difference with its current and PV injects current to source in addition to providing load that is islanding mode. After PV outages, it is seen that, the angle between current and voltage is zero and UPQC compensates current harmonics and power factor. The total harmonic distortion factor in grid voltage side the difference is 7.03% by comparing both controllers.

From the above figure results under unbalanced voltage dips in grid voltage side, voltage dips are obtained with PI controller that is eliminated by using fuzzy controller and a pure sinusoidal wave is obtained. The current delivered from the system to the grid at 0.0007 sec there is change in the value of PI controller that will be reduced by applying fuzzy controller. The value of THD across the grid voltage side difference is 7.06% by comparing both controllers and also in series converter THD is 1.45%.

Conclusion

In this paper, the results of analyzing combined operation of UPQC and PV is explained. The designed is used for both islanding and interconnected modes. The merits of the new system is reducing the expense of PV interface inverter connection to grid because of applying UPQC shunt inverter and also is the ability of compensating the voltage interruption using UPQC because of connecting PV array to DC link. In this proposed system, P&O method is used to achieve the maximum power point of PV array. Along with Advanced compensation of faulted voltage from source, when compared to PI controller fuzzy is more advantageous because of its faster response. The operation of fuzzy logic is much simpler when the fault occurs at the source due to its rule during the type of fault obtained in the source voltage, and most important thing we have to concern it is very less in cost compared to PI controller. The results obtained for the Grid interfacing using series and parallel converter system with conventional PI controller and Fuzzy logic controller are shown above

References

- 1. Z. H. Yuan, S. W. H de Haan, B. Frreira, and D. Cevoric, "A FACTS device: Distributed power flow controller .
- 2. F.Wang, J. L. Duarte, and M. A.M. Hendrix, "Grid-Interfacing Converter Systems with Enhanced Voltage Quality for Microgrid Application Concept and Implementation" IEEE 2013.
- F.Wang,J.Duarte,M.Hendrix, "High performance stationary frame filters for symmetrical sequences or harmonics separation under avariety of grid conditions,"in Proc.IEEEAPEC,2009,pp.1570-1576.
- Akagi, H. and H. Fujita, 1995. "A new power line conditional for harmonic compensation in Power systems" IEEE Transaction on Power Delivery, 10(3): 1570-1575. Digital Object Idetifier (DOI): 10.1109/61.400941
- 5. H. Fujita, and H. Akagi, "The unified power quality conditioner: the integration of series- and shunt-active filters," IEEE Trans. Power Electron., vol. 13, no. 2, pp. 315-322, Mar. 1999
- Ulapane, N.N.B.; Dhanapala, C.H.; Wickramasinghe, S.M.; Abeyratne, S.G.; Rathnayake, N.;Binduhewa, P.J.; "Extraction of parameters for simulating photovoltaic panels," 6th IEEE International Conference on Industrial and Information Systems (ICIIS), pp.539-544, 16-19 Aug.2011
- 7. Villalva, M.G.; Gazoli, J.R.; Filho, E.R.; "Comprehensive Approach Modeling to and Simulation of Photovoltaic Arrays," IEEE Transactions on Power Electronics, vol.24, no.5, pp.1198-1208, May 2006.
- Esram, T.; Chapman, P.L.; "Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques," IEEE Transactions on Energy Conversion, vol.22, no.2, pp.439-449, June 2008.